論文の概要: Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer
RGBD Sensors
- arxiv url: http://arxiv.org/abs/2105.01859v1
- Date: Wed, 5 May 2021 04:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 12:49:12.963521
- Title: Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer
RGBD Sensors
- Title(参考訳): function4d: ごく少ないrgbdセンサーから人間の体積をリアルタイムに捉える
- Authors: Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Yebin Liu
- Abstract要約: 時間的融合と深い暗黙機能を組み合わせた人間の体積捕獲法を提案する。
トポロジーの整合性とともに深度観測を融合する動的スライディングを提案する。
- 参考スコア(独自算出の注目度): 41.70787990331218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human volumetric capture is a long-standing topic in computer vision and
computer graphics. Although high-quality results can be achieved using
sophisticated off-line systems, real-time human volumetric capture of complex
scenarios, especially using light-weight setups, remains challenging. In this
paper, we propose a human volumetric capture method that combines temporal
volumetric fusion and deep implicit functions. To achieve high-quality and
temporal-continuous reconstruction, we propose dynamic sliding fusion to fuse
neighboring depth observations together with topology consistency. Moreover,
for detailed and complete surface generation, we propose detail-preserving deep
implicit functions for RGBD input which can not only preserve the geometric
details on the depth inputs but also generate more plausible texturing results.
Results and experiments show that our method outperforms existing methods in
terms of view sparsity, generalization capacity, reconstruction quality, and
run-time efficiency.
- Abstract(参考訳): 人間のボリュームキャプチャは、コンピュータビジョンとコンピュータグラフィックスにおける長年のトピックである。
高度なオフラインシステムによって高品質な結果が得られるが、複雑なシナリオ、特に軽量なセットアップを使ったリアルタイムな人間のボリュームキャプチャは依然として困難である。
本稿では,時間的体積融合と深部暗黙関数を組み合わせた人間の体積キャプチャー手法を提案する。
高品質かつ時間的連続的な再構成を実現するために,近接深度観測と位相的一貫性を融合する動的すべり融合を提案する。
さらに, 詳細かつ完全な表面生成のために, 深度入力の幾何学的詳細を保存できるだけでなく, より妥当なテクスチャ結果を生成するRGBD入力の奥深い暗黙関数を提案する。
その結果,提案手法は,ビューの疎度,一般化能力,再構築品質,実行時の効率において,既存手法よりも優れていた。
関連論文リスト
- DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
Representations via Knowledge Distillation [31.44962361819199]
Inlicit Neural Representations (INRs)は近年、科学的可視化の分野で大きな可能性を秘めている。
本稿では,コンパクトINRの重みを直接予測できる新しいハイパーネットワークアーキテクチャであるHyperINRを紹介する。
多分解能ハッシュ符号化ユニットのアンサンブルを一斉に利用することにより、INRは最先端の推論性能を得る。
論文 参考訳(メタデータ) (2023-04-09T08:10:10Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
本稿では,RGBDカメラを用いて動的屋内シーンのフリー視点映像を合成することを提案する。
我々は、RGBDフレームから点雲を生成し、それをニューラル機能を介して、自由視点ビデオにレンダリングする。
そこで本研究では,未完成の深度を適応的に塗布して新規なビューを描画する,シンプルなRegional Depth-Inpaintingモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-22T03:17:35Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - NeuralFusion: Neural Volumetric Rendering under Human-object
Interactions [46.70371238621842]
本稿では,スパース・コンシューマRGBDセンサを用いたボリューム・オブジェクトのキャプチャとレンダリングのためのニューラル・アプローチを提案する。
幾何学的モデリングでは,非剛性鍵体積融合を用いたニューラル暗黙的推論方式を提案する。
また,空間的領域と時間的領域の両方において,ボリュームと画像に基づくレンダリングを組み合わせた階層的ヒューマンオブジェクトテクスチャレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-25T17:10:07Z) - Unsupervised Single-shot Depth Estimation using Perceptual
Reconstruction [0.0]
この研究は、生成ニューラルネットワークの分野における最新の進歩を示し、それらを活用して完全に教師なしの単発深度合成を行う。
RGB-to-deepthとdeep-to-RGB転送用の2つのジェネレータを実装し,Wasserstein-1距離と新しい知覚再構成項を用いて同時に最適化した。
本研究で得られた成果は、実世界のアプリケーションにおいて、教師なし単発深度推定の大きな可能性を示している。
論文 参考訳(メタデータ) (2022-01-28T15:11:34Z) - Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural
Human Rendering [139.159534903657]
我々は、高忠実度自由視点人体詳細のための一般化可能で効率的なニューラルレーダランス・フィールド(NeRF)パイプラインを開発した。
自己閉塞性を改善するため,幾何誘導型多視点機能統合手法を考案した。
高いレンダリング効率を達成するため,幾何誘導型プログレッシブレンダリングパイプラインを導入する。
論文 参考訳(メタデータ) (2021-12-08T14:42:10Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
実環境深度のリアルタイム推定は、様々な自律システムタスクにとって必須のモジュールである。
本研究では、生成型ニューラルネットワークの分野における最近の進歩を、教師なしの単一画像深度合成に活用する。
論文 参考訳(メタデータ) (2021-03-31T09:43:38Z) - Accurate RGB-D Salient Object Detection via Collaborative Learning [101.82654054191443]
RGB-Dサリエンシ検出は、いくつかの課題シナリオにおいて素晴らしい能力を示している。
本稿では,エッジ,深度,塩分濃度をより効率的に活用する新しい協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-23T04:33:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。