Relating measurement disturbance, information and orthogonality
- URL: http://arxiv.org/abs/2105.02074v2
- Date: Thu, 18 Nov 2021 08:25:41 GMT
- Title: Relating measurement disturbance, information and orthogonality
- Authors: Yizhou Liu and John B. DeBrota
- Abstract summary: In the general theory of quantum measurement, one associates a positive semidefinite operator on a $d$-dimensional Hilbert space to each of the $n$ possible outcomes of an arbitrary measurement.
This restriction allows us to more precisely state the quantum adage: information gain of a system is always accompanied by unavoidable disturbance.
We identify symmetric informationally complete quantum measurements as the unique quantum analogs of a perfectly informative and nondisturbing classical ideal measurement.
- Score: 0.38073142980732994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the general theory of quantum measurement, one associates a positive
semidefinite operator on a $d$-dimensional Hilbert space to each of the $n$
possible outcomes of an arbitrary measurement. In the special case of a
projective measurement, these operators are pairwise Hilbert--Schmidt
orthogonal, but when $n>d$, orthogonality is restricted by positivity. This
restriction allows us to more precisely state the quantum adage: information
gain of a system is always accompanied by unavoidable disturbance.
Specifically, we investigate three properties of a measurement with L\"uders
rule updating: its disturbance, a measure of how the expected post-measurement
state deviates from the input; its measurement strength, a measure of the
intrinsic information producing capacity of the measurement; and its
orthogonality, a measure of the degree to which the measurement operators
differ from an orthonormal set. These quantities satisfy an
information-disturbance trade-off relation that highlights the additional role
played by orthogonality. Finally, we assess several classes of measurements on
these grounds and identify symmetric informationally complete quantum
measurements as the unique quantum analogs of a perfectly informative and
nondisturbing classical ideal measurement.
Related papers
- The signaling dimension in generalized probabilistic theories [48.99818550820575]
The signaling dimension of a given physical system quantifies the minimum dimension of a classical system required to reproduce all input/output correlations of the given system.
We show that it suffices to consider extremal measurements with rayextremal effects, and we bound the number of elements of any such measurement in terms of the linear dimension.
For systems with a finite number of extremal effects, we recast the problem of characterizing the extremal measurements with ray-extremal effects.
arXiv Detail & Related papers (2023-11-22T02:09:16Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Measurement sharpness and disturbance tradeoff [0.0]
Postmeasurement states for a given measurement are not unique and highly rely on the chosen measurement model.
We show there are different tradeoff relations between the sharpness of this measurement and the average fidelity of the premeasurement and postmeasurement state spaces.
In particular, we show there are different tradeoff relations between the sharpness of this measurement and the average fidelity of the premeasurement and postmeasurement state spaces.
arXiv Detail & Related papers (2023-08-08T08:43:39Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement operator for quantum nondemolition measurements [6.141422382258041]
We derive a measurement operator corresponding to a quantum nondemolition (QND) measurement of an atomic ensemble.
The quantum measurement operator takes the form of a positive operator valued measure (POVM)
arXiv Detail & Related papers (2023-01-14T12:40:50Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Continuous Gaussian Measurements of the Free Boson CFT: A model for
Exactly Solvable and Detectable Measurement-Induced Dynamics [0.0]
We introduce a scenario of measurement-induced many body evolution, which possesses an exact analytical solution: bosonic measurements.
We consider an elementary model for quantum criticality, the free boson conformal field theory, and investigate in which way criticality is modified under measurements.
For each scenario, we discuss the impact of imperfect measurements, which reduce the purity of the wavefunction and are equivalent to Markovian decoherence.
arXiv Detail & Related papers (2021-08-09T18:00:04Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - Quantifying coherence of quantum measurements [0.0]
We show that any statistical distance can be adopted to define a coherence monotone of measurement.
We specifically introduce a coherence monotone of measurement in terms of off-diagonal elements of Positive-Operator-Valued Measure (POVM) components.
arXiv Detail & Related papers (2020-08-10T09:57:28Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.