Quantum probes for universal gravity corrections
- URL: http://arxiv.org/abs/2002.05754v2
- Date: Mon, 24 Feb 2020 10:48:48 GMT
- Title: Quantum probes for universal gravity corrections
- Authors: Alessandro Candeloro, Cristian Degli Esposti Boschi and Matteo G.A.
Paris
- Abstract summary: We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address estimation of the minimum length arising from gravitational
theories. In particular, we provide bounds on precision and assess the use of
quantum probes to enhance the estimation performances. At first, we review the
concept of minimum length and show how it induces a perturbative term appearing
in the Hamiltonian of any quantum system, which is proportional to a parameter
depending on the minimum length. We then systematically study the effects of
this perturbation on different state preparations for several 1-dimensional
systems, and we evaluate the Quantum Fisher Information in order to find the
ultimate bounds to the precision of any estimation procedure. Eventually, we
investigate the role of dimensionality by analysing the use of two-dimensional
square well and harmonic oscillator systems to probe the minimal length. Our
results show that quantum probes are convenient resources, providing potential
enhancement in precision. Additionally, our results provide a set of guidelines
to design possible future experiments to detect minimal length.
Related papers
- Quantum metrology with a continuous-variable system [0.0]
We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.
We summarize some of the main experimental achievements and present emerging platforms for continuous-variable sensing.
arXiv Detail & Related papers (2024-11-06T18:57:07Z) - Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology [0.0]
Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics.
We show that interactions between the probes and an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit.
Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient.
arXiv Detail & Related papers (2024-07-23T23:11:50Z) - Parameter estimation with limited access of measurements [0.12102521201635405]
We present a theoretical framework to explore the parameter estimation with limited access of measurements.
We analyze the effect of non-optimal measurement on the estimation precision.
We show that the minimum Euclidean distance between an observable and the optimal ones is analyzed and the results show that the observable closed to the optimal ones better.
arXiv Detail & Related papers (2023-10-06T05:34:32Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Probing cosmic string spacetime through parameter estimation [2.2945727928675734]
We estimate the deficit angle parameter by calculating its quantum Fisher information(QFI)
It is found that the quantum Fisher information depends on the deficit angle, evolution time, detector initial state, polarization direction, and its position.
Our results show that for different polarization cases the QFIs have different behaviors and different orders of magnitude, which may shed light on the exploration of cosmic string spacetime.
arXiv Detail & Related papers (2022-08-10T13:55:09Z) - Quantum scale estimation [0.0]
Quantum scale estimation establishes the most precise framework for the estimation of scale parameters that is allowed by the laws of quantum mechanics.
The new framework is exploited to generalise scale-invariant global thermometry, as well as to address the estimation of the lifetime of an atomic state.
On a more conceptual note, the optimal strategy is employed to construct an observable for scale parameters, an approach which may serve as a template for a more systematic search of quantum observables.
arXiv Detail & Related papers (2021-11-23T15:03:19Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.