VoxelContext-Net: An Octree based Framework for Point Cloud Compression
- URL: http://arxiv.org/abs/2105.02158v1
- Date: Wed, 5 May 2021 16:12:48 GMT
- Title: VoxelContext-Net: An Octree based Framework for Point Cloud Compression
- Authors: Zizheng Que, Guo Lu, Dong Xu
- Abstract summary: We propose a two-stage deep learning framework called VoxelContext-Net for both static and dynamic point cloud compression.
We first extract the local voxel representation that encodes the spatial neighbouring context information for each node in the constructed octree.
In the entropy coding stage, we propose a voxel context based deep entropy model to compress the symbols of non-leaf nodes.
- Score: 20.335998518653543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a two-stage deep learning framework called
VoxelContext-Net for both static and dynamic point cloud compression. Taking
advantages of both octree based methods and voxel based schemes, our approach
employs the voxel context to compress the octree structured data. Specifically,
we first extract the local voxel representation that encodes the spatial
neighbouring context information for each node in the constructed octree. Then,
in the entropy coding stage, we propose a voxel context based deep entropy
model to compress the symbols of non-leaf nodes in a lossless way. Furthermore,
for dynamic point cloud compression, we additionally introduce the local voxel
representations from the temporal neighbouring point clouds to exploit temporal
dependency. More importantly, to alleviate the distortion from the octree
construction procedure, we propose a voxel context based 3D coordinate
refinement method to produce more accurate reconstructed point cloud at the
decoder side, which is applicable to both static and dynamic point cloud
compression. The comprehensive experiments on both static and dynamic point
cloud benchmark datasets(e.g., ScanNet and Semantic KITTI) clearly demonstrate
the effectiveness of our newly proposed method VoxelContext-Net for 3D point
cloud geometry compression.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - PVContext: Hybrid Context Model for Point Cloud Compression [61.24130634750288]
We propose PVContext, a hybrid context model for effective octree-based point cloud compression.
PVContext comprises two components with distinct modalities: the Voxel Context, which accurately represents local geometric information using voxels, and the Point Context, which efficiently preserves global shape information from point clouds.
arXiv Detail & Related papers (2024-09-19T12:47:35Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - PIVOT-Net: Heterogeneous Point-Voxel-Tree-based Framework for Point
Cloud Compression [8.778300313732027]
We propose a heterogeneous point cloud compression (PCC) framework.
We unify typical point cloud representations -- point-based, voxel-based, and tree-based representations -- and their associated backbones.
We augment the framework with a proposed context-aware upsampling for decoding and an enhanced voxel transformer for feature aggregation.
arXiv Detail & Related papers (2024-02-11T16:57:08Z) - Lightweight super resolution network for point cloud geometry
compression [34.42460388539782]
We present an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network.
The proposed method involves decomposing a point cloud into a base point cloud and the patterns for reconstructing the original point cloud.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.
arXiv Detail & Related papers (2023-11-02T03:34:51Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - Point Cloud Compression with Sibling Context and Surface Priors [47.96018990521301]
We present a novel octree-based multi-level framework for large-scale point cloud compression.
In this framework, we propose a new entropy model that explores the hierarchical dependency in an octree.
We locally fit surfaces with a voxel-based geometry-aware module to provide geometric priors in entropy encoding.
arXiv Detail & Related papers (2022-05-02T09:13:26Z) - Density-preserving Deep Point Cloud Compression [72.0703956923403]
We propose a novel deep point cloud compression method that preserves local density information.
Our method works in an auto-encoder fashion: the encoder downsamples the points and learns point-wise features, while the decoder upsamples the points using these features.
arXiv Detail & Related papers (2022-04-27T03:42:15Z) - Learning-based lossless compression of 3D point cloud geometry [11.69103847045569]
encoder operates in a hybrid mode, mixing octree and voxel-based coding.
Our method outperforms the state-of-the-art MPEG G-PCC standard with average rate savings of 28%.
arXiv Detail & Related papers (2020-11-30T11:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.