Lightweight super resolution network for point cloud geometry
compression
- URL: http://arxiv.org/abs/2311.00970v1
- Date: Thu, 2 Nov 2023 03:34:51 GMT
- Title: Lightweight super resolution network for point cloud geometry
compression
- Authors: Wei Zhang, Dingquan Li, Ge Li, Wen Gao
- Abstract summary: We present an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network.
The proposed method involves decomposing a point cloud into a base point cloud and the patterns for reconstructing the original point cloud.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.
- Score: 34.42460388539782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach for compressing point cloud geometry by
leveraging a lightweight super-resolution network. The proposed method involves
decomposing a point cloud into a base point cloud and the interpolation
patterns for reconstructing the original point cloud. While the base point
cloud can be efficiently compressed using any lossless codec, such as
Geometry-based Point Cloud Compression, a distinct strategy is employed for
handling the interpolation patterns. Rather than directly compressing the
interpolation patterns, a lightweight super-resolution network is utilized to
learn this information through overfitting. Subsequently, the network parameter
is transmitted to assist in point cloud reconstruction at the decoder side.
Notably, our approach differentiates itself from lookup table-based methods,
allowing us to obtain more accurate interpolation patterns by accessing a
broader range of neighboring voxels at an acceptable computational cost.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable
compression performance achieved by our method.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - PVContext: Hybrid Context Model for Point Cloud Compression [61.24130634750288]
We propose PVContext, a hybrid context model for effective octree-based point cloud compression.
PVContext comprises two components with distinct modalities: the Voxel Context, which accurately represents local geometric information using voxels, and the Point Context, which efficiently preserves global shape information from point clouds.
arXiv Detail & Related papers (2024-09-19T12:47:35Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
We leverage the human geometric prior in geometry redundancy removal of point clouds.
We can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations.
The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods.
arXiv Detail & Related papers (2023-05-02T10:35:20Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
We propose a novel convolutional operator for the task of point cloud completion.
The proposed operator does not require any max-pooling or voxelization operation.
We show that our approach achieves state-of-the-art performance in shape completion at low and high resolutions.
arXiv Detail & Related papers (2022-05-08T15:31:36Z) - Density-preserving Deep Point Cloud Compression [72.0703956923403]
We propose a novel deep point cloud compression method that preserves local density information.
Our method works in an auto-encoder fashion: the encoder downsamples the points and learns point-wise features, while the decoder upsamples the points using these features.
arXiv Detail & Related papers (2022-04-27T03:42:15Z) - Variable Rate Compression for Raw 3D Point Clouds [5.107705550575662]
We propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data.
Our network is capable of explicitly processing point clouds and generating a compressed description.
arXiv Detail & Related papers (2022-02-28T15:15:39Z) - Patch-Based Deep Autoencoder for Point Cloud Geometry Compression [8.44208490359453]
We propose a patch-based compression process using deep learning.
We divide the point cloud into patches and compress each patch independently.
In the decoding process, we finally assemble the decompressed patches into a complete point cloud.
arXiv Detail & Related papers (2021-10-18T08:59:57Z) - VoxelContext-Net: An Octree based Framework for Point Cloud Compression [20.335998518653543]
We propose a two-stage deep learning framework called VoxelContext-Net for both static and dynamic point cloud compression.
We first extract the local voxel representation that encodes the spatial neighbouring context information for each node in the constructed octree.
In the entropy coding stage, we propose a voxel context based deep entropy model to compress the symbols of non-leaf nodes.
arXiv Detail & Related papers (2021-05-05T16:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.