How Fine-Tuning Allows for Effective Meta-Learning
- URL: http://arxiv.org/abs/2105.02221v1
- Date: Wed, 5 May 2021 17:56:00 GMT
- Title: How Fine-Tuning Allows for Effective Meta-Learning
- Authors: Kurtland Chua, Qi Lei, Jason D. Lee
- Abstract summary: We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
- Score: 50.17896588738377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning has been widely studied in the context of
meta-learning, enabling rapid learning of new tasks through shared
representations. Recent works such as MAML have explored using
fine-tuning-based metrics, which measure the ease by which fine-tuning can
achieve good performance, as proxies for obtaining representations. We present
a theoretical framework for analyzing representations derived from a MAML-like
algorithm, assuming the available tasks use approximately the same underlying
representation. We then provide risk bounds on the best predictor found by
fine-tuning via gradient descent, demonstrating that the algorithm can provably
leverage the shared structure. The upper bound applies to general function
classes, which we demonstrate by instantiating the guarantees of our framework
in the logistic regression and neural network settings. In contrast, we
establish the existence of settings where any algorithm, using a representation
trained with no consideration for task-specific fine-tuning, performs as well
as a learner with no access to source tasks in the worst case. This separation
result underscores the benefit of fine-tuning-based methods, such as MAML, over
methods with "frozen representation" objectives in few-shot learning.
Related papers
- Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Proto-Value Networks: Scaling Representation Learning with Auxiliary
Tasks [33.98624423578388]
Auxiliary tasks improve representations learned by deep reinforcement learning agents.
We derive a new family of auxiliary tasks based on the successor measure.
We show that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms.
arXiv Detail & Related papers (2023-04-25T04:25:08Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
We propose Maximum Entropy Coding (MEC) as a principled objective that explicitly optimize on the structure of the representation.
MEC learns a more generalizable representation than previous methods based on specific pretext tasks.
It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking.
arXiv Detail & Related papers (2022-10-20T17:58:30Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data.
We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation.
arXiv Detail & Related papers (2022-05-16T11:23:42Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Improving Few-Shot Learning through Multi-task Representation Learning
Theory [14.8429503385929]
We consider the framework of multi-task representation (MTR) learning where the goal is to use source tasks to learn a representation that reduces the sample complexity of solving a target task.
We show that recent advances in MTR theory can provide novel insights for popular meta-learning algorithms when analyzed within this framework.
This is the first contribution that puts the most recent learning bounds of MTR theory into practice for the task of few-shot classification.
arXiv Detail & Related papers (2020-10-05T13:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.