Proto-Value Networks: Scaling Representation Learning with Auxiliary
Tasks
- URL: http://arxiv.org/abs/2304.12567v1
- Date: Tue, 25 Apr 2023 04:25:08 GMT
- Title: Proto-Value Networks: Scaling Representation Learning with Auxiliary
Tasks
- Authors: Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan,
Ross Goroshin, Pablo Samuel Castro, Marc G. Bellemare
- Abstract summary: Auxiliary tasks improve representations learned by deep reinforcement learning agents.
We derive a new family of auxiliary tasks based on the successor measure.
We show that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms.
- Score: 33.98624423578388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auxiliary tasks improve the representations learned by deep reinforcement
learning agents. Analytically, their effect is reasonably well understood; in
practice, however, their primary use remains in support of a main learning
objective, rather than as a method for learning representations. This is
perhaps surprising given that many auxiliary tasks are defined procedurally,
and hence can be treated as an essentially infinite source of information about
the environment. Based on this observation, we study the effectiveness of
auxiliary tasks for learning rich representations, focusing on the setting
where the number of tasks and the size of the agent's network are
simultaneously increased. For this purpose, we derive a new family of auxiliary
tasks based on the successor measure. These tasks are easy to implement and
have appealing theoretical properties. Combined with a suitable off-policy
learning rule, the result is a representation learning algorithm that can be
understood as extending Mahadevan & Maggioni (2007)'s proto-value functions to
deep reinforcement learning -- accordingly, we call the resulting object
proto-value networks. Through a series of experiments on the Arcade Learning
Environment, we demonstrate that proto-value networks produce rich features
that may be used to obtain performance comparable to established algorithms,
using only linear approximation and a small number (~4M) of interactions with
the environment's reward function.
Related papers
- Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
We study the benefit of sharing representations among tasks to enable the effective use of deep neural networks in Multi-Task Reinforcement Learning.
We prove this by providing theoretical guarantees that highlight the conditions for which is convenient to share representations among tasks.
arXiv Detail & Related papers (2024-01-17T19:31:21Z) - Learning Good Features to Transfer Across Tasks and Domains [16.05821129333396]
We first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a given domain.
Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen domains.
arXiv Detail & Related papers (2023-01-26T18:49:39Z) - Auxiliary task discovery through generate-and-test [7.800263769988046]
Auxiliary tasks improve data efficiency by forcing the agent to learn auxiliary prediction and control objectives.
In this paper, we explore an approach to auxiliary task discovery in reinforcement learning based on ideas from representation learning.
We introduce a new measure of auxiliary tasks' usefulness based on how useful the features induced by them are for the main task.
arXiv Detail & Related papers (2022-10-25T22:04:37Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Domain-Robust Visual Imitation Learning with Mutual Information
Constraints [0.0]
We introduce a new algorithm called Disentangling Generative Adversarial Imitation Learning (DisentanGAIL)
Our algorithm enables autonomous agents to learn directly from high dimensional observations of an expert performing a task.
arXiv Detail & Related papers (2021-03-08T21:18:58Z) - Learning to Represent Action Values as a Hypergraph on the Action
Vertices [17.811355496708728]
Action-value estimation is a critical component of reinforcement learning (RL) methods.
We conjecture that leveraging the structure of multi-dimensional action spaces is a key ingredient for learning good representations of action.
We show the effectiveness of our approach on a myriad of domains: illustrative prediction problems under minimal confounding effects, Atari 2600 games, and discretised physical control benchmarks.
arXiv Detail & Related papers (2020-10-28T00:19:13Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
Training neural networks with auxiliary tasks is a common practice for improving the performance on a main task of interest.
Here, we propose a novel framework, AuxiLearn, that targets both challenges based on implicit differentiation.
First, when useful auxiliaries are known, we propose learning a network that combines all losses into a single coherent objective function.
Second, when no useful auxiliary task is known, we describe how to learn a network that generates a meaningful, novel auxiliary task.
arXiv Detail & Related papers (2020-06-22T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.