R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
- URL: http://arxiv.org/abs/2105.02290v1
- Date: Wed, 5 May 2021 19:17:14 GMT
- Title: R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
- Authors: Dhaval D. Kadia, Md Zahangir Alom, Ranga Burada, Tam V. Nguyen,
Vijayan K. Asari
- Abstract summary: We propose a novel model, namely, Recurrent Residual 3D U-Net (R2U3D), for the 3D lung segmentation task.
In particular, the proposed model integrates 3D convolution into the Recurrent Residual Neural Network based on U-Net.
The proposed R2U3D network is trained on the publicly available dataset LUNA16 and it achieves state-of-the-art performance.
- Score: 17.343802171952195
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 3D lung segmentation is essential since it processes the volumetric
information of the lungs, removes the unnecessary areas of the scan, and
segments the actual area of the lungs in a 3D volume. Recently, the deep
learning model, such as U-Net outperforms other network architectures for
biomedical image segmentation. In this paper, we propose a novel model, namely,
Recurrent Residual 3D U-Net (R2U3D), for the 3D lung segmentation task. In
particular, the proposed model integrates 3D convolution into the Recurrent
Residual Neural Network based on U-Net. It helps learn spatial dependencies in
3D and increases the propagation of 3D volumetric information. The proposed
R2U3D network is trained on the publicly available dataset LUNA16 and it
achieves state-of-the-art performance on both LUNA16 (testing set) and VESSEL12
dataset. In addition, we show that training the R2U3D model with a smaller
number of CT scans, i.e., 100 scans, without applying data augmentation
achieves an outstanding result in terms of Soft Dice Similarity Coefficient
(Soft-DSC) of 0.9920.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene
Understanding [40.68012530554327]
We introduce a pretrained 3D backbone, called SST, for 3D indoor scene understanding.
We design a 3D Swin transformer as our backbone network, which enables efficient self-attention on sparse voxels with linear memory complexity.
A series of extensive ablation studies further validate the scalability, generality, and superior performance enabled by our approach.
arXiv Detail & Related papers (2023-04-14T02:49:08Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - 3D U-Net for segmentation of COVID-19 associated pulmonary infiltrates
using transfer learning: State-of-the-art results on affordable hardware [0.0]
pulmonary infiltrates can help assess severity of COVID-19, but manual segmentation is labor and time-intensive.
Using neural networks to segment pulmonary infiltrates would enable automation of this task.
We developed and tested a solution on how transfer learning can be used to train state-of-the-art segmentation models on limited hardware and in shorter time.
arXiv Detail & Related papers (2021-01-25T09:37:32Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - 3D Axial-Attention for Lung Nodule Classification [0.11458853556386794]
We propose to use 3D Axial-Attention, which requires a fraction of the computing power of a regular Non-Local network.
We solve the position invariant problem of the Non-Local network by proposing adding 3D positional encoding to shared embeddings.
Our results show that the 3D Axial-Attention model achieves state-of-the-art performance on all evaluation metrics including AUC and Accuracy.
arXiv Detail & Related papers (2020-12-28T06:49:09Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis.
Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images.
We propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions.
arXiv Detail & Related papers (2020-12-16T21:39:53Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.