3D-to-2D Distillation for Indoor Scene Parsing
- URL: http://arxiv.org/abs/2104.02243v2
- Date: Wed, 7 Apr 2021 06:04:14 GMT
- Title: 3D-to-2D Distillation for Indoor Scene Parsing
- Authors: Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu
- Abstract summary: We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
- Score: 78.36781565047656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indoor scene semantic parsing from RGB images is very challenging due to
occlusions, object distortion, and viewpoint variations. Going beyond prior
works that leverage geometry information, typically paired depth maps, we
present a new approach, a 3D-to-2D distillation framework, that enables us to
leverage 3D features extracted from large-scale 3D data repository (e.g.,
ScanNet-v2) to enhance 2D features extracted from RGB images. Our work has
three novel contributions. First, we distill 3D knowledge from a pretrained 3D
network to supervise a 2D network to learn simulated 3D features from 2D
features during the training, so the 2D network can infer without requiring 3D
data. Second, we design a two-stage dimension normalization scheme to calibrate
the 2D and 3D features for better integration. Third, we design a
semantic-aware adversarial training model to extend our framework for training
with unpaired 3D data. Extensive experiments on various datasets, ScanNet-V2,
S3DIS, and NYU-v2, demonstrate the superiority of our approach. Also,
experimental results show that our 3D-to-2D distillation improves the model
generalization.
Related papers
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation [67.36775428466045]
We propose Geometry Guided Self-Distillation (GGSD) to learn superior 3D representations from 2D pre-trained models.
Due to the advantages of 3D representation, the performance of the distilled 3D student model can significantly surpass that of the 2D teacher model.
arXiv Detail & Related papers (2024-07-18T10:13:56Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks.
We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss.
Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks.
arXiv Detail & Related papers (2023-06-05T03:14:54Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - Data Efficient 3D Learner via Knowledge Transferred from 2D Model [30.077342050473515]
We deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images.
We utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label.
Our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency.
arXiv Detail & Related papers (2022-03-16T09:14:44Z) - 3D-Aware Indoor Scene Synthesis with Depth Priors [62.82867334012399]
Existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside.
We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry.
arXiv Detail & Related papers (2022-02-17T09:54:29Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - Learning from 2D: Pixel-to-Point Knowledge Transfer for 3D Pretraining [21.878815180924832]
We present a novel 3D pretraining method by leveraging 2D networks learned from rich 2D datasets.
Our experiments show that the 3D models pretrained with 2D knowledge boost the performances across various real-world 3D downstream tasks.
arXiv Detail & Related papers (2021-04-10T05:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.