A Step Toward More Inclusive People Annotations for Fairness
- URL: http://arxiv.org/abs/2105.02317v1
- Date: Wed, 5 May 2021 20:44:56 GMT
- Title: A Step Toward More Inclusive People Annotations for Fairness
- Authors: Candice Schumann, Susanna Ricco, Utsav Prabhu, Vittorio Ferrari,
Caroline Pantofaru
- Abstract summary: We present a new set of annotations on a subset of the Open Images dataset called the MIAP subset.
The attributes and labeling methodology for the MIAP subset were designed to enable research into model fairness.
- Score: 38.546190750434945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Open Images Dataset contains approximately 9 million images and is a
widely accepted dataset for computer vision research. As is common practice for
large datasets, the annotations are not exhaustive, with bounding boxes and
attribute labels for only a subset of the classes in each image. In this paper,
we present a new set of annotations on a subset of the Open Images dataset
called the MIAP (More Inclusive Annotations for People) subset, containing
bounding boxes and attributes for all of the people visible in those images.
The attributes and labeling methodology for the MIAP subset were designed to
enable research into model fairness. In addition, we analyze the original
annotation methodology for the person class and its subclasses, discussing the
resulting patterns in order to inform future annotation efforts. By considering
both the original and exhaustive annotation sets, researchers can also now
study how systematic patterns in training annotations affect modeling.
Related papers
- Masked Image Modeling: A Survey [73.21154550957898]
Masked image modeling emerged as a powerful self-supervised learning technique in computer vision.
We construct a taxonomy and review the most prominent papers in recent years.
We aggregate the performance results of various masked image modeling methods on the most popular datasets.
arXiv Detail & Related papers (2024-08-13T07:27:02Z) - Leveraging image captions for selective whole slide image annotation [0.37334049820361814]
This paper focuses on identifying and annotating specific image regions that optimize model training.
Prototype sampling is more effective than random and diversity sampling in identifying annotation regions with valuable training information.
Our results show that prototype sampling is more effective than random and diversity sampling in identifying annotation regions with valuable training information.
arXiv Detail & Related papers (2024-07-08T20:05:21Z) - Rethinking Generalization: The Impact of Annotation Style on Medical
Image Segmentation [9.056814157662965]
We show that modeling annotation biases, rather than ignoring them, poses a promising way of accounting for differences in annotation style across datasets.
Next, we present an image-conditioning approach to model annotation styles that correlate with specific image features, potentially enabling detection biases to be more easily identified.
arXiv Detail & Related papers (2022-10-31T15:28:49Z) - VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning [113.50220968583353]
We propose to discover semantic embeddings containing discriminative visual properties for zero-shot learning.
Our model visually divides a set of images from seen classes into clusters of local image regions according to their visual similarity.
We demonstrate that our visually-grounded semantic embeddings further improve performance over word embeddings across various ZSL models by a large margin.
arXiv Detail & Related papers (2022-03-20T03:49:02Z) - Generalized Category Discovery [148.32255950504182]
We consider a highly general image recognition setting wherein, given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set.
Here, the unlabelled images may come from labelled classes or from novel ones.
We first establish strong baselines by taking state-of-the-art algorithms from novel category discovery and adapting them for this task.
We then introduce a simple yet effective semi-supervised $k$-means method to cluster the unlabelled data into seen and unseen classes.
arXiv Detail & Related papers (2022-01-07T18:58:35Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Open-World Semi-Supervised Learning [66.90703597468377]
We introduce a new open-world semi-supervised learning setting in which the model is required to recognize previously seen classes.
We propose ORCA, an approach that learns to simultaneously classify and cluster the data.
We demonstrate that ORCA accurately discovers novel classes and assigns samples to previously seen classes on benchmark image classification datasets.
arXiv Detail & Related papers (2021-02-06T07:11:07Z) - Multiple instance learning on deep features for weakly supervised object
detection with extreme domain shifts [1.9336815376402716]
Weakly supervised object detection (WSOD) using only image-level annotations has attracted a growing attention over the past few years.
We show that a simple multiple instance approach applied on pre-trained deep features yields excellent performances on non-photographic datasets.
arXiv Detail & Related papers (2020-08-03T20:36:01Z) - Semi-supervised Learning with a Teacher-student Network for Generalized
Attribute Prediction [7.462336024223667]
This paper presents a study on semi-supervised learning to solve the visual attribute prediction problem.
Our method achieves competitive performance on various benchmarks for fashion attribute prediction.
arXiv Detail & Related papers (2020-07-14T02:06:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.