Leveraging image captions for selective whole slide image annotation
- URL: http://arxiv.org/abs/2407.06363v1
- Date: Mon, 8 Jul 2024 20:05:21 GMT
- Title: Leveraging image captions for selective whole slide image annotation
- Authors: Jingna Qiu, Marc Aubreville, Frauke Wilm, Mathias Öttl, Jonas Utz, Maja Schlereth, Katharina Breininger,
- Abstract summary: This paper focuses on identifying and annotating specific image regions that optimize model training.
Prototype sampling is more effective than random and diversity sampling in identifying annotation regions with valuable training information.
Our results show that prototype sampling is more effective than random and diversity sampling in identifying annotation regions with valuable training information.
- Score: 0.37334049820361814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acquiring annotations for whole slide images (WSIs)-based deep learning tasks, such as creating tissue segmentation masks or detecting mitotic figures, is a laborious process due to the extensive image size and the significant manual work involved in the annotation. This paper focuses on identifying and annotating specific image regions that optimize model training, given a limited annotation budget. While random sampling helps capture data variance by collecting annotation regions throughout the WSIs, insufficient data curation may result in an inadequate representation of minority classes. Recent studies proposed diversity sampling to select a set of regions that maximally represent unique characteristics of the WSIs. This is done by pretraining on unlabeled data through self-supervised learning and then clustering all regions in the latent space. However, establishing the optimal number of clusters can be difficult and not all clusters are task-relevant. This paper presents prototype sampling, a new method for annotation region selection. It discovers regions exhibiting typical characteristics of each task-specific class. The process entails recognizing class prototypes from extensive histopathology image-caption databases and detecting unlabeled image regions that resemble these prototypes. Our results show that prototype sampling is more effective than random and diversity sampling in identifying annotation regions with valuable training information, resulting in improved model performance in semantic segmentation and mitotic figure detection tasks. Code is available at https://github.com/DeepMicroscopy/Prototype-sampling.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Adaptive Region Selection for Active Learning in Whole Slide Image
Semantic Segmentation [3.1392713791311766]
Region-based active learning (AL) involves training the model on a limited number of annotated image regions.
We introduce a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyper parameter.
We evaluate our method using the task of breast cancer segmentation on the public CAMELYON16 dataset.
arXiv Detail & Related papers (2023-07-14T05:34:13Z) - A new dataset for measuring the performance of blood vessel segmentation methods under distribution shifts [0.0]
VessMAP is a heterogeneous blood vessel segmentation dataset acquired by carefully sampling relevant images from a larger non-annotated dataset.
A methodology was developed to select both prototypical and atypical samples from the base dataset.
To demonstrate the potential of the new dataset, we show that the validation performance of a neural network changes significantly depending on the splits used for training the network.
arXiv Detail & Related papers (2023-01-11T15:31:15Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
Deep neural networks have been widely applied in nuclei instance segmentation of H&E stained pathology images.
It is inefficient and unnecessary to label all pixels for a dataset of nuclei images which usually contain similar and redundant patterns.
We propose a novel full nuclei segmentation framework that chooses only a few image patches to be annotated, augments the training set from the selected samples, and achieves nuclei segmentation in a semi-supervised manner.
arXiv Detail & Related papers (2022-12-20T14:53:26Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Discriminative Region-based Multi-Label Zero-Shot Learning [145.0952336375342]
Multi-label zero-shot learning (ZSL) is a more realistic counter-part of standard single-label ZSL.
We propose an alternate approach towards region-based discriminability-preserving ZSL.
arXiv Detail & Related papers (2021-08-20T17:56:47Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions.
We propose an active learning framework, which progressively integrates pixel-level annotations during training.
Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of-the-art CAMs and AL methods.
arXiv Detail & Related papers (2020-10-10T03:25:54Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.