Image Embedding and Model Ensembling for Automated Chest X-Ray
Interpretation
- URL: http://arxiv.org/abs/2105.02966v1
- Date: Wed, 5 May 2021 14:48:59 GMT
- Title: Image Embedding and Model Ensembling for Automated Chest X-Ray
Interpretation
- Authors: Edoardo Giacomello, Pier Luca Lanzi, Daniele Loiacono, Luca Nassano
- Abstract summary: We present and study several machine learning approaches to develop automated Chest X-ray diagnostic models.
In particular, we trained several Convolutional Neural Networks (CNN) on the CheXpert dataset.
We used the trained CNNs to compute embeddings of the CXR images, in order to train two sets of tree-based classifiers from them.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X-ray (CXR) is perhaps the most frequently-performed radiological
investigation globally. In this work, we present and study several machine
learning approaches to develop automated CXR diagnostic models. In particular,
we trained several Convolutional Neural Networks (CNN) on the CheXpert dataset,
a large collection of more than 200k CXR labeled images. Then, we used the
trained CNNs to compute embeddings of the CXR images, in order to train two
sets of tree-based classifiers from them. Finally, we described and compared
three ensembling strategies to combine together the classifiers trained. Rather
than expecting some performance-wise benefits, our goal in this work is showing
that the above two methodologies, i.e., the extraction of image embeddings and
models ensembling, can be effective and viable to solve tasks that require
medical imaging understanding. Our results in that perspective are encouraging
and worthy of further investigation.
Related papers
- MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Can we Adopt Self-supervised Pretraining for Chest X-Rays? [10.529356372817386]
Convolutional Neural Networks (CNN) have seen success in identifying pathologies in Chest X-Ray (CXR) images.
In this work, we analyze the utility of pretraining on unlabeled ImageNet or CXR datasets using various algorithms and in multiple settings.
Some findings of our work include: (i) supervised training with labeled ImageNet learns strong representations that are hard to beat; (ii) self-supervised pretraining on ImageNet (1M images) shows performance similar to self-supervised pretraining on a CXR dataset (100K images); and (iii) the CNN trained on supervised
arXiv Detail & Related papers (2022-11-23T13:06:59Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
We analyze how information about diagnosis can improve CNN-based image classification models.
We show that a model trained on additional patient history information outperforms a model trained without the information by a significant margin.
arXiv Detail & Related papers (2022-10-28T11:47:15Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Multi-task UNet: Jointly Boosting Saliency Prediction and Disease
Classification on Chest X-ray Images [3.8637285238278434]
This paper describes a novel deep learning model for visual saliency prediction on chest X-ray (CXR) images.
To cope with data deficiency, we exploit the multi-task learning method and tackles disease classification on CXR simultaneously.
Experiments show our proposed deep learning model with our new learning scheme can outperform existing methods dedicated either for saliency prediction or image classification.
arXiv Detail & Related papers (2022-02-15T01:12:42Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Triage of Potential COVID-19 Patients from Chest X-ray Images using
Hierarchical Convolutional Networks [5.7179132552879395]
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential alternative to reverse transcription-polymerase chain reaction (RT-PCR)
The chest X-ray (CXR) is one of the alternatives to achieve fast diagnosis but the unavailability of large-scale annotated data makes the clinical implementation of machine learning-based COVID detection difficult.
In this paper, we propose the use of hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features.
arXiv Detail & Related papers (2020-11-01T20:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.