Generative AI: A Pix2pix-GAN-Based Machine Learning Approach for Robust and Efficient Lung Segmentation
- URL: http://arxiv.org/abs/2412.10826v1
- Date: Sat, 14 Dec 2024 13:12:09 GMT
- Title: Generative AI: A Pix2pix-GAN-Based Machine Learning Approach for Robust and Efficient Lung Segmentation
- Authors: Sharmin Akter,
- Abstract summary: This study develops a deep learning framework using a Pix2pix Generative Adversarial Network (GAN) to segment pulmonary abnormalities from CXR images.
The framework's image preprocessing and augmentation techniques were properly incorporated with a U-Net-inspired generator-discriminator architecture.
- Score: 0.7614628596146602
- License:
- Abstract: Chest radiography is climacteric in identifying different pulmonary diseases, yet radiologist workload and inefficiency can lead to misdiagnoses. Automatic, accurate, and efficient segmentation of lung from X-ray images of chest is paramount for early disease detection. This study develops a deep learning framework using a Pix2pix Generative Adversarial Network (GAN) to segment pulmonary abnormalities from CXR images. This framework's image preprocessing and augmentation techniques were properly incorporated with a U-Net-inspired generator-discriminator architecture. Initially, it loaded the CXR images and manual masks from the Montgomery and Shenzhen datasets, after which preprocessing and resizing were performed. A U-Net generator is applied to the processed CXR images that yield segmented masks; then, a Discriminator Network differentiates between the generated and real masks. Montgomery dataset served as the model's training set in the study, and the Shenzhen dataset was used to test its robustness, which was used here for the first time. An adversarial loss and an L1 distance were used to optimize the model in training. All metrics, which assess precision, recall, F1 score, and Dice coefficient, prove the effectiveness of this framework in pulmonary abnormality segmentation. It, therefore, sets the basis for future studies to be performed shortly using diverse datasets that could further confirm its clinical applicability in medical imaging.
Related papers
- BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images [21.19843479423806]
Chest X-rays (CXRs) are commonly utilized as a low-dose modality for lung screening.
Approximately 75% of the lung area overlaps with bone, which in turn hampers the detection and diagnosis of diseases.
Bone suppression techniques have been introduced, but the current dual-energy subtraction imaging technique in the clinic requires costly equipment and subjects being exposed to high radiation.
This paper proposes a new bone suppression framework, termed BS-Diff, that comprises a conditional diffusion model equipped with a U-Net architecture and a simple enhancement module to incorporate an autoencoder.
arXiv Detail & Related papers (2023-11-26T15:13:13Z) - Full-resolution Lung Nodule Segmentation from Chest X-ray Images using
Residual Encoder-Decoder Networks [21.724154440093216]
Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis.
Computer vision has previously been proposed to assist human radiologists in this task.
This study localizes lung nodules using efficient encoder-decoder neural networks.
arXiv Detail & Related papers (2023-07-13T04:05:39Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Image Embedding and Model Ensembling for Automated Chest X-Ray
Interpretation [0.0]
We present and study several machine learning approaches to develop automated Chest X-ray diagnostic models.
In particular, we trained several Convolutional Neural Networks (CNN) on the CheXpert dataset.
We used the trained CNNs to compute embeddings of the CXR images, in order to train two sets of tree-based classifiers from them.
arXiv Detail & Related papers (2021-05-05T14:48:59Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep LF-Net: Semantic Lung Segmentation from Indian Chest Radiographs
Including Severely Unhealthy Images [5.826056983051642]
A chest radiograph, commonly called chest x-ray (CxR), plays a vital role in the diagnosis of various lung diseases.
Precise lung segmentation is extremely challenging because of variance in the shape of the lung caused by health issues, age, and gender.
The proposed work investigates the use of an efficient deep convolutional neural network for accurate segmentation of lungs from CxR.
arXiv Detail & Related papers (2020-11-19T07:21:02Z) - Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial
Networks [0.5249805590164902]
This paper presents the use of generative adversarial networks (GAN) to perform the task of lung segmentation on a given Chest X-ray (CXR)
In our work, the generator of the GAN is trained to generate a segmented mask of a given input CXR.
The objective is to generate masks for the input CXR, which are as realistic as possible compared to the ground truth masks.
arXiv Detail & Related papers (2020-09-12T08:54:54Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.