論文の概要: Efficient Masked Face Recognition Method during the COVID-19 Pandemic
- arxiv url: http://arxiv.org/abs/2105.03026v2
- Date: Fri, 12 Apr 2024 11:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 20:30:27.742898
- Title: Efficient Masked Face Recognition Method during the COVID-19 Pandemic
- Title(参考訳): 新型コロナウイルスパンデミック時の効率的なマスク付き顔認識法
- Authors: Walid Hariri,
- Abstract要約: 新型コロナウイルス(COVID-19)は異例の危機であり、多くの死傷者やセキュリティ上の問題に繋がる。
新型コロナウイルスの感染拡大を抑えるため、マスクを着用して身を守ることが多い。
これにより、顔の一部が隠されているため、顔認識は非常に難しいタスクとなる。
- 参考スコア(独自算出の注目度): 4.13365552362244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The coronavirus disease (COVID-19) is an unparalleled crisis leading to a huge number of casualties and security problems. In order to reduce the spread of coronavirus, people often wear masks to protect themselves. This makes face recognition a very difficult task since certain parts of the face are hidden. A primary focus of researchers during the ongoing coronavirus pandemic is to come up with suggestions to handle this problem through rapid and efficient solutions. In this paper, we propose a reliable method based on occlusion removal and deep learning-based features in order to address the problem of the masked face recognition process. The first step is to remove the masked face region. Next, we apply three pre-trained deep Convolutional Neural Networks (CNN) namely, VGG-16, AlexNet, and ResNet-50, and use them to extract deep features from the obtained regions (mostly eyes and forehead regions). The Bag-of-features paradigm is then applied to the feature maps of the last convolutional layer in order to quantize them and to get a slight representation comparing to the fully connected layer of classical CNN. Finally, Multilayer Perceptron (MLP) is applied for the classification process. Experimental results on Real-World-Masked-Face-Dataset show high recognition performance compared to other state-of-the-art methods.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)は異例の危機であり、多くの死傷者やセキュリティ上の問題に繋がる。
新型コロナウイルスの感染拡大を抑えるため、マスクを着用して身を守ることが多い。
これにより、顔の一部が隠されているため、顔認識は非常に難しいタスクとなる。
新型コロナウイルスの感染拡大が続く中、研究者の焦点は、迅速かつ効率的な解決策によってこの問題に対処することを提案することにある。
本稿では,隠蔽除去と深層学習に基づく特徴量に基づく信頼度の高い手法を提案する。
最初のステップは、マスクされた顔領域を削除することです。
次に、VGG-16、AlexNet、ResNet-50の3つの事前訓練された深部畳み込みニューラルネットワーク(CNN)を適用し、得られた領域(主に目と額の領域)から深部特徴を抽出する。
次に、Bag-of-Featuresパラダイムを最後の畳み込み層の特徴写像に適用し、それらを定量化し、古典的CNNの完全連結層と比較したわずかな表現を得る。
最後に、分類プロセスに多層パーセプトロン(MLP)を適用する。
Real-World-Masked-Face-Datasetの実験結果は、他の最先端手法と比較して高い認識性能を示した。
関連論文リスト
- Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - A transfer learning approach with convolutional neural network for Face
Mask Detection [0.30693357740321775]
本稿では,トランスファー学習とインセプションv3アーキテクチャに基づくマスク認識システムを提案する。
マスクやマスクのない顔に加えて、マスクの誤用も検出できる。
論文 参考訳(メタデータ) (2023-10-29T07:38:33Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
新型コロナウイルス感染症2019(COVID-19)は、感染拡大以来、世界にとって大きな課題となっている。
この病気と闘うために、一連の人工知能(AI)技術が開発され、現実世界のシナリオに適用される。
本稿では主に、マスク付き顔検出と関連するデータセットのAI技術に焦点を当てる。
論文 参考訳(メタデータ) (2022-01-13T03:28:20Z) - COVID-19 Face Mask Recognition with Advanced Face Cut Algorithm for
Human Safety Measures [0.0]
新型コロナウイルス(COVID-19)は、人体の呼吸器に主に影響を及ぼす、高度に汚染された病気である。
本提案では,画像やビデオから顔のマスクを認識するためのコンピュータビジョンとディープラーニングフレームワークをデプロイする。
実験の結果、わずか10時間でYOLOV3マスク認識アーキテクチャと比較して3.4%の大幅な進歩が見られた。
論文 参考訳(メタデータ) (2021-10-08T18:03:36Z) - Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency
Representation Learning [23.062034116854875]
新型コロナウイルスの感染拡大を遅らせる効果的な方法の1つは、ワクチンや薬品がない場合、マスクを着用することである。
公共の場でのマスクや覆いの使用を義務付けるには、面倒で注意が集中的な人的資源の追加が必要である。
本稿では,フィードフォワード畳み込みニューラルネットワークの効果的な注目を実現するために,コンテキストアテンションモジュールを用いたフェイスマスク検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-01T16:44:06Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
最先端の一般的な顔認識モデルは、隠蔽された顔画像に対してうまく一般化しない。
本稿では,1つのエンドツーエンドのディープニューラルネットワークに基づいて,オクルージョンに頑健な新しい顔認識手法を提案する。
我々のアプローチは、深い畳み込みニューラルネットワークから破損した特徴を発見し、動的に学習されたマスクによってそれらをきれいにする。
論文 参考訳(メタデータ) (2021-08-21T09:08:41Z) - TransRPPG: Remote Photoplethysmography Transformer for 3D Mask Face
Presentation Attack Detection [53.98866801690342]
3次元マスク提示攻撃検出(PAD)は、3次元マスク攻撃から顔認識システムを保護する上で重要な役割を担っている。
ライブ本質表現を効率的に学習するための純粋なrトランス(TransR)フレームワークを提案する。
当社のTransRは軽量で効率的(547Kパラメータと763MOPのみ)で、モバイルレベルのアプリケーションに期待できる。
論文 参考訳(メタデータ) (2021-04-15T12:33:13Z) - Towards NIR-VIS Masked Face Recognition [47.00916333095693]
近赤外可視(NIR-VIS)顔認識は異種顔認識において最も一般的な症例である。
2つのドメインの顔表現で共有される相互情報を最大化するための新しいトレーニング手法を提案する。
さらに、既存のNIR画像からマスク面を合成するために、3次元顔再構成に基づくアプローチを用いる。
論文 参考訳(メタデータ) (2021-04-14T10:40:09Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。