論文の概要: Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification
- arxiv url: http://arxiv.org/abs/2105.03042v2
- Date: Tue, 11 May 2021 02:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 11:17:58.220619
- Title: Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification
- Title(参考訳): 一般化可能な人物再同定のための適応的ドメイン特化正規化
- Authors: Jiawei Liu, Zhipeng Huang, Kecheng Zheng, Dong Liu, Xiaoyan Sun,
Zheng-Jun Zha
- Abstract要約: 一般化可能なRe-IDのための適応型ドメイン固有正規化手法(AdsNorm)を提案する。
本研究では,一般化可能人物 Re-ID に対する適応領域特異的正規化手法 (AdsNorm) を提案する。
- 参考スコア(独自算出の注目度): 81.30327016286009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although existing person re-identification (Re-ID) methods have shown
impressive accuracy, most of them usually suffer from poor generalization on
unseen target domain. Thus, generalizable person Re-ID has recently drawn
increasing attention, which trains a model on source domains that generalizes
well on unseen target domain without model updating. In this work, we propose a
novel adaptive domain-specific normalization approach (AdsNorm) for
generalizable person Re-ID. It describes unseen target domain as a combination
of the known source ones, and explicitly learns domain-specific representation
with target distribution to improve the model's generalization by a
meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization
layers to collect individual source domains' characteristics, and maps source
domains into a shared latent space by using these characteristics, where the
domain relevance is measured by a distance function of different
domain-specific normalization statistics and features. At the testing stage,
AdsNorm projects images from unseen target domain into the same latent space,
and adaptively integrates the domain-specific features carrying the source
distributions by domain relevance for learning more generalizable aggregated
representation on unseen target domain. Considering that target domain is
unavailable during training, a meta-learning algorithm combined with a
customized relation loss is proposed to optimize an effective and efficient
ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the
state-of-the-art methods. The code is available at:
https://github.com/hzphzp/AdsNorm.
- Abstract(参考訳): 既存の人物再同定法 (re-id) は印象的な精度を示したが, ほとんどは対象領域の認識が不十分な場合が多い。
このように、一般化可能なRe-IDは、最近注目を集めており、モデル更新なしで、見えないターゲットドメインによく一般化するソースドメインのモデルを訓練している。
本研究では,一般化可能なRe-IDのための適応型ドメイン固有正規化手法(AdsNorm)を提案する。
未知のターゲットドメインを既知のソースドメインの組み合わせとして記述し、メタ学習パイプラインによるモデルの一般化を改善するために、ターゲットディストリビューションとドメイン固有の表現を明示的に学習する。
具体的には、adsnormはバッチ正規化層を使用して個々のソースドメインの特性を収集し、これらの特徴を用いてソースドメインを共有潜在空間にマップする。
テスト段階では、adsnormは対象領域の未認識画像を同じ潜在空間に投影し、対象領域のより一般化された集約表現を学ぶために、ドメインの関連性によってソース分布を運ぶドメイン固有の機能を適応的に統合する。
学習中に対象ドメインが利用できないことを考慮し,効率的なアンサンブルモデルの最適化を目的としたメタ学習アルゴリズムを提案する。
大規模な実験により、AdsNormは最先端の手法よりも優れていることが示された。
コードは、https://github.com/hzphzp/AdsNorm.comで入手できる。
関連論文リスト
- Cross-Domain Ensemble Distillation for Domain Generalization [17.575016642108253]
クロスドメイン・アンサンブル蒸留(XDED)という,シンプルで効果的な領域一般化法を提案する。
本手法は,同じラベルを持つトレーニングデータから,異なるドメインから出力ロジットのアンサンブルを生成し,そのアンサンブルとのミスマッチに対して各出力をペナルティ化する。
本手法で学習したモデルは, 敵攻撃や画像の破損に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-11-25T12:32:36Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
ドメイン一般化(Domain Generalization, DG)は、観測されていないターゲットドメインで正常に動作するために、複数の観測されたソースドメインからモデルをトレーニングすることを目的としている。
以前のDGアプローチでは、ターゲットドメインを一般化するために、ソース間でのドメイン不変情報を抽出することに重点を置いていた。
本稿ではメタドメイン固有ドメイン不変量(mD)を提案する。
論文 参考訳(メタデータ) (2021-10-18T15:42:39Z) - Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification [34.813965300584776]
個人の再識別では、ドメインとクラスは相関する。
このドメイン・クラス間の相関関係により、ドメインの敵対的学習はクラスに関する特定の情報を失うことが示される。
我々のモデルは、大規模ドメイン一般化Re-IDベンチマークにおいて最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-29T09:45:03Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised Domain Adaptive (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインからラベル付きターゲットドメインへ知識を転送することを目的としている。
ひとつの課題は、トレーニング用に信頼できるラベルでターゲットドメインサンプルを生成する方法だ。
ディスタングルメントに基づくクロスドメイン機能拡張戦略を提案する。
論文 参考訳(メタデータ) (2021-03-25T15:28:41Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
ドメインの一般化は、異なるドメインと見えないドメインで堅牢に実行されるように機械学習モデルをトレーニングすることを目的としている。
一般的な領域一般化ベンチマークにおいて,最先端技術よりも分類精度が著しく向上したことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:02:57Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
ドメイン内および外部の一般化性能を改善するモデルである一般化のためのドメイン固有マスクを紹介する。
ドメインの一般化のために、ゴールはソースドメインの集合から学び、見えないターゲットドメインに最もよく一般化する単一のモデルを作成することである。
本研究では,PACSとDomainNetの両面において,単純なベースラインと最先端の手法と比較して,競争力のある性能を示す。
論文 参考訳(メタデータ) (2020-08-28T20:39:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。