論文の概要: Recognition and Processing of NATOM
- arxiv url: http://arxiv.org/abs/2105.03314v1
- Date: Thu, 29 Apr 2021 10:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 09:07:52.010936
- Title: Recognition and Processing of NATOM
- Title(参考訳): NATOMの認識と処理
- Authors: YiPeng Deng, YinHui Luo
- Abstract要約: 本稿では,民間航空分野におけるNOTAM(Notice to Airmen)データの処理方法について述べる。
NOTAMのオリジナルのデータには、中国語と英語の混合があり、構造は貧弱です。
グローブワードベクターメソッドを使用して、カスタムマッピング語彙を使用するデータを表現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we show how to process the NOTAM (Notice to Airmen) data of the
field in civil aviation. The main research contents are as follows: 1.Data
preprocessing: For the original data of the NOTAM, there is a mixture of
Chinese and English, and the structure is poor. The original data is cleaned,
the Chinese data and the English data are processed separately, word
segmentation is completed, and stopping-words are removed. Using Glove word
vector methods to represent the data for using a custom mapping vocabulary.
2.Decoupling features and classifiers: In order to improve the ability of the
text classification model to recognize minority samples, the overall model
training process is decoupled from the perspective of the algorithm as a whole,
divided into two stages of feature learning and classifier learning. The
weights of the feature learning stage and the classifier learning stage adopt
different strategies to overcome the influence of the head data and tail data
of the imbalanced data set on the classification model. Experiments have proved
that the use of decoupling features and classifier methods based on the neural
network classification model can complete text multi-classification tasks in
the field of civil aviation, and at the same time can improve the recognition
accuracy of the minority samples in the data set.
- Abstract(参考訳): 本稿では,民間航空分野におけるNOTAM(Notice to Airmen)データの処理方法について述べる。
主な研究内容は以下の通りである: データ前処理:NOTAMの原データには中国語と英語が混在しており、構造は貧弱である。
元のデータをクリーニングし、中国語データと英語データを別々に処理し、単語分割を完了し、停止語を除去する。
Gloveワードベクトルメソッドを使用して、カスタムマッピング語彙を使用するデータを表現する。
2.特徴と分類器の分離: テキスト分類モデルのマイノリティサンプル認識能力を向上させるため、全体的なモデルトレーニングプロセスはアルゴリズム全体の観点から分離され、特徴学習と分類学習の2つの段階に分けられる。
特徴学習段階と分類器学習段階の重みは、分類モデルに設定された不均衡データセットの頭部データと尾データの影響を克服するための異なる戦略を採用する。
実験により、ニューラルネットワーク分類モデルに基づくデカップリング特徴と分類手法を用いることで、民間航空分野におけるテキスト多分類タスクを完遂できると同時に、データセット内のマイノリティサンプルの認識精度を向上させることが証明された。
関連論文リスト
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Simple-Sampling and Hard-Mixup with Prototypes to Rebalance Contrastive Learning for Text Classification [11.072083437769093]
我々は不均衡テキスト分類タスクのためのSharpReCLという新しいモデルを提案する。
私たちのモデルは、いくつかのデータセットで人気のある大きな言語モデルよりも優れています。
論文 参考訳(メタデータ) (2024-05-19T11:33:49Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
影響スコア」は、データの重要なサブセットを特定するために使われる。
本稿では,言語分類タスクにおける影響スコアの適用性について検討する。
論文 参考訳(メタデータ) (2023-11-27T20:19:22Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
本研究は,少ショット関係分類(FSRC)に焦点を当てる。
クラスプロトタイプの表現にラベル単語を追加するための適応的混合機構を提案する。
FewRelでは、異なる数ショット(FS)設定で実験が行われた。
論文 参考訳(メタデータ) (2021-01-10T11:25:42Z) - Sequential Targeting: an incremental learning approach for data
imbalance in text classification [7.455546102930911]
不均衡なデータセットを扱う方法は、分散スキューを軽減するために不可欠である。
本稿では,提案手法の有効性によらず,新たなトレーニング手法であるシーケンスターゲティング(ST)を提案する。
シミュレーションベンチマークデータセット(IMDB)とNAVERから収集したデータを用いて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2020-11-20T04:54:00Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
ジョブ列のインタラクションデータは疎結合でノイズが多く、ジョブ列のマッチングアルゴリズムのパフォーマンスに影響する。
求人情報マッチングのための疎相互作用データから,新しいマルチビュー協調学習ネットワークを提案する。
我々のモデルは求人マッチングの最先端手法より優れている。
論文 参考訳(メタデータ) (2020-09-25T03:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。