Unsupervised Cross-Domain Prerequisite Chain Learning using Variational
Graph Autoencoders
- URL: http://arxiv.org/abs/2105.03505v1
- Date: Fri, 7 May 2021 21:02:41 GMT
- Title: Unsupervised Cross-Domain Prerequisite Chain Learning using Variational
Graph Autoencoders
- Authors: Irene Li, Vanessa Yan, Tianxiao Li, Rihao Qu and Dragomir Radev
- Abstract summary: We propose unsupervised cross-domain concept prerequisite chain learning using an optimized variational graph autoencoder.
Our model learns to transfer concept prerequisite relations from an information-rich domain to an information-poor domain.
Also, we expand an existing dataset by introducing two new domains: CV and Bioinformatics.
- Score: 2.735701323590668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning prerequisite chains is an essential task for efficiently acquiring
knowledge in both known and unknown domains. For example, one may be an expert
in the natural language processing (NLP) domain but want to determine the best
order to learn new concepts in an unfamiliar Computer Vision domain (CV). Both
domains share some common concepts, such as machine learning basics and deep
learning models. In this paper, we propose unsupervised cross-domain concept
prerequisite chain learning using an optimized variational graph autoencoder.
Our model learns to transfer concept prerequisite relations from an
information-rich domain (source domain) to an information-poor domain (target
domain), substantially surpassing other baseline models. Also, we expand an
existing dataset by introducing two new domains: CV and Bioinformatics (BIO).
The annotated data and resources, as well as the code, will be made publicly
available.
Related papers
- Adapting to Distribution Shift by Visual Domain Prompt Generation [34.19066857066073]
We adapt a model at test-time using a few unlabeled data to address distribution shifts.
We build a knowledge bank to learn the transferable knowledge from source domains.
The proposed method outperforms previous work on 5 large-scale benchmarks including WILDS and DomainNet.
arXiv Detail & Related papers (2024-05-05T02:44:04Z) - CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples.
Existing methods in video action recognition rely on large labeled datasets from the same domain.
We propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning.
arXiv Detail & Related papers (2023-09-07T19:44:27Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings.
Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation.
We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder.
arXiv Detail & Related papers (2021-11-16T07:34:42Z) - Efficient Variational Graph Autoencoders for Unsupervised Cross-domain
Prerequisite Chains [3.358838755118655]
We introduce Domain-versaational Variational Graph Autoencoders (DAVGAE) to solve this cross-domain prerequisite chain learning task efficiently.
Our novel model consists of a variational graph autoencoder (VGAE) and a domain discriminator.
Results show that our model outperforms recent graph-based computation using only 1/10 graph scale and 1/3 time.
arXiv Detail & Related papers (2021-09-17T19:07:27Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
We identify two key aspects that can help to alleviate multiple domain-shifts in the multi-target domain adaptation (MTDA)
We propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier head, with one of them being a graph convolutional network (GCN) which aggregates features from similar samples across the domains.
When the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on the easier target domains, followed by the harder ones.
arXiv Detail & Related papers (2021-04-01T23:41:41Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Detecting Bias in Transfer Learning Approaches for Text Classification [3.968023038444605]
In a supervised learning setting, labels are always needed for the classification task.
In this work, we evaluate some existing transfer learning approaches on detecting the bias of imbalanced classes.
arXiv Detail & Related papers (2021-02-03T15:48:21Z) - Towards Recognizing New Semantic Concepts in New Visual Domains [9.701036831490768]
We argue that it is crucial to design deep architectures that can operate in previously unseen visual domains and recognize novel semantic concepts.
In the first part of the thesis, we describe different solutions to enable deep models to generalize to new visual domains.
In the second part, we show how to extend the knowledge of a pretrained deep model to new semantic concepts, without access to the original training set.
arXiv Detail & Related papers (2020-12-16T16:23:40Z) - Deep Domain-Adversarial Image Generation for Domain Generalisation [115.21519842245752]
Machine learning models typically suffer from the domain shift problem when trained on a source dataset and evaluated on a target dataset of different distribution.
To overcome this problem, domain generalisation (DG) methods aim to leverage data from multiple source domains so that a trained model can generalise to unseen domains.
We propose a novel DG approach based on emphDeep Domain-Adversarial Image Generation (DDAIG)
arXiv Detail & Related papers (2020-03-12T23:17:47Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
We propose a novel adaptable framework, namely knowledge tracing (AKT) to address the DAKT problem.
For the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model.
For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training.
arXiv Detail & Related papers (2020-01-14T15:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.