Adapting to Distribution Shift by Visual Domain Prompt Generation
- URL: http://arxiv.org/abs/2405.02797v1
- Date: Sun, 5 May 2024 02:44:04 GMT
- Title: Adapting to Distribution Shift by Visual Domain Prompt Generation
- Authors: Zhixiang Chi, Li Gu, Tao Zhong, Huan Liu, Yuanhao Yu, Konstantinos N Plataniotis, Yang Wang,
- Abstract summary: We adapt a model at test-time using a few unlabeled data to address distribution shifts.
We build a knowledge bank to learn the transferable knowledge from source domains.
The proposed method outperforms previous work on 5 large-scale benchmarks including WILDS and DomainNet.
- Score: 34.19066857066073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to adapt a model at test-time using a few unlabeled data to address distribution shifts. To tackle the challenges of extracting domain knowledge from a limited amount of data, it is crucial to utilize correlated information from pre-trained backbones and source domains. Previous studies fail to utilize recent foundation models with strong out-of-distribution generalization. Additionally, domain-centric designs are not flavored in their works. Furthermore, they employ the process of modelling source domains and the process of learning to adapt independently into disjoint training stages. In this work, we propose an approach on top of the pre-computed features of the foundation model. Specifically, we build a knowledge bank to learn the transferable knowledge from source domains. Conditioned on few-shot target data, we introduce a domain prompt generator to condense the knowledge bank into a domain-specific prompt. The domain prompt then directs the visual features towards a particular domain via a guidance module. Moreover, we propose a domain-aware contrastive loss and employ meta-learning to facilitate domain knowledge extraction. Extensive experiments are conducted to validate the domain knowledge extraction. The proposed method outperforms previous work on 5 large-scale benchmarks including WILDS and DomainNet.
Related papers
- Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis.
We propose a Large Language Model-based Continual Learning (textttLLM-CL) model for ABSA.
arXiv Detail & Related papers (2024-05-09T02:00:07Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from
Mixture-of-Experts [33.21435044949033]
Most existing methods perform training on multiple source domains using a single model.
We propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process.
arXiv Detail & Related papers (2022-10-08T02:28:10Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Multilevel Knowledge Transfer for Cross-Domain Object Detection [26.105283273950942]
Domain shift is a well known problem where a model trained on a particular domain (source) does not perform well when exposed to samples from a different domain (target)
In this work, we address the domain shift problem for the object detection task.
Our approach relies on gradually removing the domain shift between the source and the target domains.
arXiv Detail & Related papers (2021-08-02T15:24:40Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Learning to Cluster under Domain Shift [20.00056591000625]
In this work we address the problem of transferring knowledge from a source to a target domain when both source and target data have no annotations.
Inspired by recent works on deep clustering, our approach leverages information from data gathered from multiple source domains.
We show that our method is able to automatically discover relevant semantic information even in presence of few target samples.
arXiv Detail & Related papers (2020-08-11T12:03:01Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
We propose a novel adaptable framework, namely knowledge tracing (AKT) to address the DAKT problem.
For the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model.
For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training.
arXiv Detail & Related papers (2020-01-14T15:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.