Overcoming the repeaterless bound in continuous-variable quantum
communication without quantum memories
- URL: http://arxiv.org/abs/2105.03586v1
- Date: Sat, 8 May 2021 04:02:17 GMT
- Title: Overcoming the repeaterless bound in continuous-variable quantum
communication without quantum memories
- Authors: Matthew S. Winnel, Joshua J. Guanzon, Nedasadat Hosseinidehaj, Timothy
C. Ralph
- Abstract summary: One of the main problems in quantum communications is how to achieve high rates at long distances.
We introduce a continuous-variable protocol which overcomes the repeaterless bound and scales like the single-repeater bound.
We show that our scheme can be extended to longer repeater chains using quantum memories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main problems in quantum communications is how to achieve high
rates at long distances. Quantum repeaters, i.e., untrusted, intermediate relay
stations, are necessary to overcome the repeaterless bound which sets the
fundamental rate-distance limit of repeaterless communications. In this work,
we introduce a continuous-variable protocol which overcomes the repeaterless
bound and scales like the single-repeater bound using just one linear-optical
device called a "quantum scissor", combining the entanglement distillation and
entanglement swapping elements of previous repeater proposals into a single
step, thus, removing the need for quantum memories. Implementing a standard
continuous-variable quantum key distribution protocol using our repeater we
predict key rates which surpass the repeaterless bound. Our protocol works well
for non-ideal single-photon sources and non-ideal single-photon detectors, and
can tolerate some level of excess noise, making our protocol implementable with
existing technology. We show that our scheme can be extended to longer repeater
chains using quantum memories, using less physical resources than previous
schemes. Furthermore, for applications beyond key distribution, our scheme
generalises to higher order and distils more entanglement at the cost of a
reduced probability of success.
Related papers
- Generalized quantum repeater graph states [1.7635061227370266]
We present a new approach to ensure the loss tolerance of distributing a single ebit.
We demonstrate that our new scheme significantly outperforms the previous work with much flexibility.
These findings offer new insights into the scalability and reliability of loss-tolerant quantum networks.
arXiv Detail & Related papers (2024-07-01T16:21:37Z) - Asynchronous Quantum Repeater using Multiple Quantum Memory [0.6445605125467574]
A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters.
We propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the single-photon interference protocol.
arXiv Detail & Related papers (2024-01-11T08:24:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Ultimate-rate quantum repeaters for quantum communications [0.0]
Quantum repeaters are necessary to overcome the repeaterless bound.
In this thesis, we give physical repeater designs for this achievability.
We also propose practical repeater designs with near-term potential for real-world practical applications.
arXiv Detail & Related papers (2023-06-15T02:19:18Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Efficient optimization of cut-offs in quantum repeater chains [0.0]
We develop an algorithm for computing the probability distribution of the waiting time and fidelity of entanglement produced by repeater chain protocols.
We use the algorithm to optimize cut-offs in order to maximize secret-key rate between the end nodes of the repeater chain.
arXiv Detail & Related papers (2020-05-11T09:17:21Z) - Quantum repeater for continuous variable entanglement distribution [0.0]
We present an improved continuous variable repeater scheme using optimal Gaussian entanglement swapping.
We show that our scheme beats the direct transmission upper limit for shorter distances.
arXiv Detail & Related papers (2020-04-14T08:02:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.