Entanglement-assisted entanglement purification
- URL: http://arxiv.org/abs/2011.07078v2
- Date: Wed, 21 Jul 2021 14:57:16 GMT
- Title: Entanglement-assisted entanglement purification
- Authors: Ferran Riera S\`abat, Pavel Sekatski, Alexander Pirker and Wolfgang
D\"ur
- Abstract summary: We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficient generation of high-fidelity entangled states is the key element
for long-distance quantum communication, quantum computation and other quantum
technologies, and at the same time the most resource-consuming part in many
schemes. We present a new class of entanglement-assisted entanglement
purification protocols that can generate high-fidelity entanglement from noisy,
finite-size ensembles with improved yield and fidelity as compared to previous
approaches. The scheme utilizes high-dimensional auxiliary entanglement to
perform entangling non-local measurements and determine the number and
positions of errors in an ensemble in a controlled and efficient way, without
disturbing the entanglement of good pairs. Our protocols can deal with
arbitrary errors, but are best suited for few errors, and work particularly
well for decay noise. Our methods are applicable to moderate sized ensembles,
as will be important for near term quantum devices.
Related papers
- Fast quantum interconnects via constant-rate entanglement distillation [0.0]
We develop constant-rate entanglement distillation methods for quantum interconnects.
We prove the scheme has constant-rate in expectation and numerically optimize to achieve low practical overhead.
We find our optimized schemes outperform existing computationally efficient quantum interconnect schemes by an order of magnitude in relevant regimes.
arXiv Detail & Related papers (2024-08-28T16:54:54Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Dynamically Corrected Nonadiabatic Holonomic Quantum Gates [2.436681150766912]
The noise-resilience feature of nonadiabatic holonomic quantum computation (NHQC) still needs to be improved.
We propose a general protocol of universal NHQC with simplified control, which can greatly suppress the effect of accompanied X errors.
Numerical simulation shows that the performance of our gate can be much better than previous protocols.
arXiv Detail & Related papers (2020-12-16T15:52:38Z) - Efficient entanglement generation and detection of generalized
stabilizer states [3.931366810430107]
We present an efficient scheme to generate genuine multipartite entanglement of a large number of qubits by using the Heisenberg interaction.
This method can be conveniently implemented in various physical platforms, including superconducting, trapped-ion, and cold-atom systems.
arXiv Detail & Related papers (2020-12-14T14:56:50Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.