論文の概要: Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling
on Heterogeneous Embedded Platforms
- arxiv url: http://arxiv.org/abs/2105.03596v2
- Date: Tue, 11 May 2021 08:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-13 11:29:22.569758
- Title: Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling
on Heterogeneous Embedded Platforms
- Title(参考訳): Dynamic-OFA:不均一な組み込みプラットフォーム上でのパフォーマンススケーリングのための実行時DNNアーキテクチャスイッチ
- Authors: Wei Lou, Lei Xun, Amin Sabet, Jia Bi, Jonathon Hare, Geoff V. Merrett
- Abstract要約: 本稿では,最新のプラットフォーム対応NASモデル(すなわち,新しい動的DNNアプローチであるDynamic-OFAを提案する。
once-for-all network (OFA))
最新技術と比較して,Jetson Xavier NX を用いた実験結果から,この手法は ImageNet Top-1 の精度で 3.5 倍高速であることがわかった。
- 参考スコア(独自算出の注目度): 3.3197851873862385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile and embedded platforms are increasingly required to efficiently
execute computationally demanding DNNs across heterogeneous processing
elements. At runtime, the available hardware resources to DNNs can vary
considerably due to other concurrently running applications. The performance
requirements of the applications could also change under different scenarios.
To achieve the desired performance, dynamic DNNs have been proposed in which
the number of channels/layers can be scaled in real time to meet different
requirements under varying resource constraints. However, the training process
of such dynamic DNNs can be costly, since platform-aware models of different
deployment scenarios must be retrained to become dynamic. This paper proposes
Dynamic-OFA, a novel dynamic DNN approach for state-of-the-art platform-aware
NAS models (i.e. Once-for-all network (OFA)). Dynamic-OFA pre-samples a family
of sub-networks from a static OFA backbone model, and contains a runtime
manager to choose different sub-networks under different runtime environments.
As such, Dynamic-OFA does not need the traditional dynamic DNN training
pipeline. Compared to the state-of-the-art, our experimental results using
ImageNet on a Jetson Xavier NX show that the approach is up to 3.5x (CPU), 2.4x
(GPU) faster for similar ImageNet Top-1 accuracy, or 3.8% (CPU), 5.1% (GPU)
higher accuracy at similar latency.
- Abstract(参考訳): モバイルおよび組み込みプラットフォームは、不均一な処理要素をまたいだ計算要求のDNNを効率的に実行するためにますます必要となる。
実行時に、DNNに利用可能なハードウェアリソースは、他の並列実行アプリケーションによって大きく異なる可能性がある。
アプリケーションのパフォーマンス要件は、異なるシナリオの下でも変更できる。
所望の性能を達成するために,様々な資源制約の下で異なる要求を満たすために,チャネル/レイヤの数をリアルタイムでスケールできる動的dnnが提案されている。
しかし、このような動的DNNのトレーニングプロセスは、異なるデプロイメントシナリオのプラットフォーム対応モデルを再トレーニングする必要があるため、コストがかかる可能性がある。
本稿では,最新のプラットフォーム対応NASモデル(すなわち,新しい動的DNNアプローチであるDynamic-OFAを提案する。
全ネットワーク(OFA)。
dynamic-ofaは静的ofaバックボーンモデルからサブネットワークのファミリーをプリサンプリングし、異なるランタイム環境下で異なるサブネットワークを選択するランタイムマネージャを含む。
そのため、Dynamic-OFAは従来の動的DNNトレーニングパイプラインを必要としない。
最新技術と比較すると、Jetson Xavier NX上でのImageNetを用いた実験結果は、アプローチが類似のImageNet Top-1精度で3.5x(CPU)、2.4x(GPU)、または3.8%(CPU)、同様のレイテンシで5.1%(GPU)の精度であることを示している。
関連論文リスト
- Dynamic DNNs and Runtime Management for Efficient Inference on
Mobile/Embedded Devices [2.8851756275902476]
ディープニューラルネットワーク(DNN)推論は、モバイルおよび組み込みプラットフォームでますます実行されています。
システムレベルの性能とエネルギー効率を最大化する新しいDynamic Super-Networksを共同で設計した。
SOTAと比較すると、Jetson Xavier NXのGPU上でのImageNetを用いた実験結果は、類似のImageNet Top-1精度で2.4倍、類似のレイテンシで5.1%高速であることを示している。
論文 参考訳(メタデータ) (2024-01-17T04:40:30Z) - Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
Multi-DNN Workloads [65.47816359465155]
複数のディープニューラルネットワーク(DNN)を並列に実行することは、両エッジデバイスで新たなワークロードとなっている。
スパースマルチDNNスケジューリングに静的なスケジューラパターンと動的スケジューラ情報の両方を利用する新しいスケジューラDystaを提案する。
提案手法は, 遅延制約違反率を最大10%削減し, 平均正規化ターンアラウンド時間で約4倍に向上する。
論文 参考訳(メタデータ) (2023-10-17T09:25:17Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - An efficient and flexible inference system for serving heterogeneous
ensembles of deep neural networks [0.0]
ディープニューラルネットワーク(DNN)のアンサンブルは定性的予測を達成しているが、それらは計算とメモリ集約である。
DNNの柔軟性と効率性を両立させる新しいソフトウェア層を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:05:43Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Incremental Training and Group Convolution Pruning for Runtime DNN
Performance Scaling on Heterogeneous Embedded Platforms [23.00896228073755]
Deep Neural Networksの推論は、モバイルおよび組み込みプラットフォームでローカルに実行されるようになっている。
本稿では,インクリメンタルトレーニングとグループ畳み込みプルーニングを用いた動的DNNを提案する。
タスクマッピングとDVFSを組み合わせて10.6倍(エネルギー)と41.6倍(時間)のダイナミックレンジを達成した。
論文 参考訳(メタデータ) (2021-05-08T05:38:01Z) - A Progressive Sub-Network Searching Framework for Dynamic Inference [33.93841415140311]
本稿では、トレーニング可能なノイズランキング、チャネルグループ、微調整しきい値設定、サブネット再選択など、いくつかの効果的な手法を組み込んだプログレッシブサブネット探索フレームワークを提案する。
提案手法は,従来普及していたUniversally-Slimmable-Networkの4.4%と平均2.3%と,モデルサイズが同じであるImageNetデータセットと比較して,より優れた動的推論精度を実現する。
論文 参考訳(メタデータ) (2020-09-11T22:56:02Z) - Learning Dynamic Routing for Semantic Segmentation [86.56049245100084]
本稿では,動的ルーティングと呼ばれる意味表現のスケール分散を緩和する概念的に新しい手法を提案する。
提案フレームワークは,各画像のスケール分布に適応して,データ依存経路を生成する。
この目的のために、ハエのスケール変換経路を選択するために、ソフトコンディショナルゲートと呼ばれる微分可能なゲーティング関数を提案する。
論文 参考訳(メタデータ) (2020-03-23T17:22:14Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。