論文の概要: EZCrop: Energy-Zoned Channels for Robust Output Pruning
- arxiv url: http://arxiv.org/abs/2105.03679v2
- Date: Tue, 11 May 2021 05:05:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 11:16:40.265064
- Title: EZCrop: Energy-Zoned Channels for Robust Output Pruning
- Title(参考訳): ezcrop:ロバストな出力プルーニングのためのエネルギゾンドチャネル
- Authors: Rui Lin, Jie Ran, Dongpeng Wang, King Hung Chiu and Ngai Wong
- Abstract要約: 最近の結果は、訓練された畳み込みニューラルネットワーク(CNN)で興味深い観察を明らかにしました。
特徴マップチャネルマトリックスのランクは、入力画像にもかかわらず驚くほど一定です。
この結果、効果的なランクベースのチャネルプルーニングアルゴリズムが導かれたが、定位現象は謎と説明がつかないままである。
- 参考スコア(独自算出の注目度): 6.868495647132413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent results have revealed an interesting observation in a trained
convolutional neural network (CNN), namely, the rank of a feature map channel
matrix remains surprisingly constant despite the input images. This has led to
an effective rank-based channel pruning algorithm, yet the constant rank
phenomenon remains mysterious and unexplained. This work aims at demystifying
and interpreting such rank behavior from a frequency-domain perspective, which
as a bonus suggests an extremely efficient Fast Fourier Transform (FFT)-based
metric for measuring channel importance without explicitly computing its rank.
We achieve remarkable CNN channel pruning based on this analytically sound and
computationally efficient metric and adopt it for repetitive pruning to
demonstrate robustness via our scheme named Energy-Zoned Channels for Robust
Output Pruning (EZCrop), which shows consistently better results than other
state-of-the-art channel pruning methods.
- Abstract(参考訳): 近年の研究では、訓練された畳み込みニューラルネットワーク(cnn)において、入力画像にもかかわらず特徴マップチャネル行列のランクが驚くほど一定であり続けるという興味深い観察がなされている。
これにより、効果的なランクベースのチャネルプルーニングアルゴリズムが実現したが、定位現象は謎と説明がつかないままである。
この研究は、周波数領域の観点からそのようなランクの振る舞いを減弱し、解釈することを目的としており、これは、そのランクを明示的に計算することなくチャネルの重要度を測定するための極端に効率的なFFT(Fast Fourier Transform)ベースの計量を示唆している。
本研究では, この解析的かつ計算効率の高い指標に基づいて, 卓越したcnnチャネルの刈り取りを実現し, 反復的刈り取り法に適用し, ロバスト出力プルーニングのためのエネルギゾンドチャネル (ezcrop) という方式によるロバストネスを実証した。
関連論文リスト
- Channel-Aware Domain-Adaptive Generative Adversarial Network for Robust Speech Recognition [23.9811164130045]
本稿では,頑健な音声認識訓練のためのチャネル認識データシミュレーション手法を提案する。
提案手法は,チャネル抽出技術とGANの相乗効果を利用する。
台湾におけるハッカ・アクロス・台湾 (HAT) と台湾・アクロス・台湾 (TAT) のコーパスについて, 相対的文字誤り率 (CER) を 20.02% と 9.64% の減少率で評価した。
論文 参考訳(メタデータ) (2024-09-19T01:02:31Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
我々はOFDMサブバンドにおけるチャネル予測のための効率的な機械学習(ML)に基づく手法を提案する。
提案手法の新規性は、選択的なフェーディングにおける将来のチャネル挙動を推定するために使用されるチャネルフェーディングサンプルのトレーニングにある。
論文 参考訳(メタデータ) (2023-05-31T09:41:27Z) - MIMO Channel Estimation using Score-Based Generative Models [1.6752182911522517]
本稿では,ディープスコアに基づく生成モデルを用いたチャネル推定手法を提案する。
これらのモデルは、対数-主分布の勾配を推定するために訓練され、観測された信号の測定から推定を反復的に洗練するために使用することができる。
論文 参考訳(メタデータ) (2022-04-14T17:23:58Z) - Adaptive Fourier Neural Operators: Efficient Token Mixers for
Transformers [55.90468016961356]
本稿では,Fourierドメインのミキシングを学習する効率的なトークンミキサーを提案する。
AFNOは、演算子学習の原則的基礎に基づいている。
65kのシーケンスサイズを処理でき、他の効率的な自己認識機構より優れている。
論文 参考訳(メタデータ) (2021-11-24T05:44:31Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Channel Pruning Guided by Spatial and Channel Attention for DNNs in
Intelligent Edge Computing [15.248962858090431]
重要な課題は、どのチャネルを削除すべきかを判断し、モデルの精度が負の影響を受けないようにすることだ。
本稿では,空間的注意とチャネル的注意の両方を組み合わせた新しいアテンションモジュールを提案する。
SCAのガイダンスにより、CPSCAアプローチは、他の最先端のプルーニング手法よりも高い推論精度を実現する。
論文 参考訳(メタデータ) (2020-11-08T02:40:06Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。