The Local Approach to Causal Inference under Network Interference
- URL: http://arxiv.org/abs/2105.03810v4
- Date: Wed, 28 Jun 2023 19:39:54 GMT
- Title: The Local Approach to Causal Inference under Network Interference
- Authors: Eric Auerbach and Max Tabord-Meehan
- Abstract summary: We propose a new nonparametric modeling framework for causal inference when outcomes depend on how agents are linked in a social or economic network.
Our approach works by first characterizing how an agent is linked in the network using the configuration of other agents and connections nearby as measured by path distance.
The impact of a policy or treatment assignment is then learned by pooling outcome data across similarly configured agents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new nonparametric modeling framework for causal inference when
outcomes depend on how agents are linked in a social or economic network. Such
network interference describes a large literature on treatment spillovers,
social interactions, social learning, information diffusion, disease and
financial contagion, social capital formation, and more. Our approach works by
first characterizing how an agent is linked in the network using the
configuration of other agents and connections nearby as measured by path
distance. The impact of a policy or treatment assignment is then learned by
pooling outcome data across similarly configured agents. We demonstrate the
approach by proposing an asymptotically valid test for the hypothesis of policy
irrelevance/no treatment effects and bounding the mean-squared error of a
k-nearest-neighbor estimator for the average or distributional policy
effect/treatment response.
Related papers
- Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
We leverage an online attack on the vulnerable data collection process.
From the game-theoretic perspective, the confrontation scenario is formulated as a distributionally robust game.
The proposed method manipulates the results of rank aggregation methods in a sequential manner.
arXiv Detail & Related papers (2024-07-02T03:31:21Z) - Model-Based Inference and Experimental Design for Interference Using Partial Network Data [4.76518127830168]
We present a framework for the estimation and inference of treatment effect adjustments using partial network data.
We illustrate procedures to assign treatments using only partial network data.
We validate our approach using simulated experiments on observed graphs with applications to information diffusion in India and Malawi.
arXiv Detail & Related papers (2024-06-17T17:27:18Z) - Causal Influence in Federated Edge Inference [34.487472866247586]
In this paper, we consider a setting where heterogeneous agents with connectivity are performing inference using unlabeled streaming data.
In order to overcome the uncertainty, agents cooperate with each other by exchanging their local inferences with and through a fusion center.
Various scenarios reflecting different agent participation patterns and fusion center policies are investigated.
arXiv Detail & Related papers (2024-05-02T13:06:50Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Causal Influences over Social Learning Networks [46.723361065955544]
The paper investigates causal influences between agents linked by a social graph and interacting over time.
It proposes an algorithm to rank the overall influence between agents to discover highly influential agents.
The results and the proposed algorithm are illustrated by considering both synthetic data and real Twitter data.
arXiv Detail & Related papers (2023-07-13T04:25:19Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.