Reduced-Rank Multi-objective Policy Learning and Optimization
- URL: http://arxiv.org/abs/2404.18490v1
- Date: Mon, 29 Apr 2024 08:16:30 GMT
- Title: Reduced-Rank Multi-objective Policy Learning and Optimization
- Authors: Ezinne Nwankwo, Michael I. Jordan, Angela Zhou,
- Abstract summary: In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
- Score: 57.978477569678844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the causal impacts of possible interventions is crucial for informing decision-making, especially towards improving access to opportunity. However, if causal effects are heterogeneous and predictable from covariates, personalized treatment decisions can improve individual outcomes and contribute to both efficiency and equity. In practice, however, causal researchers do not have a single outcome in mind a priori and often collect multiple outcomes of interest that are noisy estimates of the true target of interest. For example, in government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty. The ultimate goal is to learn an optimal treatment policy that in some sense maximizes multiple outcomes simultaneously. To address such issues, we present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning with multiple objectives. We learn a low-dimensional representation of the true outcome from the observed outcomes using reduced rank regression. We develop a suite of estimates that use the model to denoise observed outcomes, including commonly-used index weightings. These methods improve estimation error in policy evaluation and optimization, including on a case study of real-world cash transfer and social intervention data. Reducing the variance of noisy social outcomes can improve the performance of algorithmic allocations.
Related papers
- Reconciling Heterogeneous Effects in Causal Inference [44.99833362998488]
We apply the Reconcile algorithm for model multiplicity in machine learning to reconcile heterogeneous effects in causal inference.
Our results have tangible implications for ensuring fair outcomes in high-stakes such as healthcare, insurance, and housing.
arXiv Detail & Related papers (2024-06-05T18:43:46Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
We show how learning to rank can maximize the area under a policy's incremental profit curve.
We show how learning to rank can maximize the area under a policy's incremental profit curve.
arXiv Detail & Related papers (2024-05-03T15:31:18Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Individualized Policy Evaluation and Learning under Clustered Network
Interference [4.560284382063488]
We consider the problem of evaluating and learning an optimal individualized treatment rule under clustered network interference.
We propose an estimator that can be used to evaluate the empirical performance of an ITR.
We derive the finite-sample regret bound for a learned ITR, showing that the use of our efficient evaluation estimator leads to the improved performance of learned policies.
arXiv Detail & Related papers (2023-11-04T17:58:24Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Stochastic Intervention for Causal Inference via Reinforcement Learning [7.015556609676951]
Central to causal inference is the treatment effect estimation of intervention strategies.
Existing methods are mostly restricted to the deterministic treatment and compare outcomes under different treatments.
We propose a new effective framework to estimate the treatment effect on intervention.
arXiv Detail & Related papers (2021-05-28T00:11:22Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.