論文の概要: Stronger Privacy for Federated Collaborative Filtering with Implicit
Feedback
- arxiv url: http://arxiv.org/abs/2105.03941v1
- Date: Sun, 9 May 2021 13:41:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:25:34.763268
- Title: Stronger Privacy for Federated Collaborative Filtering with Implicit
Feedback
- Title(参考訳): 暗黙的フィードバックを用いた連帯協調フィルタリングにおけるプライバシーの強化
- Authors: Lorenzo Minto, Moritz Haller, Hammed Haddadi, Benjamin Livshits
- Abstract要約: ユーザレベルの局所差分プライバシー (LDP) 下での暗黙のデータに対する実用的なフェデレーションレコメンダーシステムを提案する。
プライバシとユーティリティのトレードオフはパラメータ$epsilon$と$k$で制御され、更新毎のプライバシー予算と、各ユーザが送信する$epsilon$-LDPグラデーションの更新数を規制する。
5k項目の50kユーザに対して,K=10(HR@10)0.68でHit Ratioを達成し,MovieLensデータセット上でフレームワークの有効性を実証的に実証した。
- 参考スコア(独自算出の注目度): 8.277567852741242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems are commonly trained on centrally collected user
interaction data like views or clicks. This practice however raises serious
privacy concerns regarding the recommender's collection and handling of
potentially sensitive data. Several privacy-aware recommender systems have been
proposed in recent literature, but comparatively little attention has been
given to systems at the intersection of implicit feedback and privacy. To
address this shortcoming, we propose a practical federated recommender system
for implicit data under user-level local differential privacy (LDP). The
privacy-utility trade-off is controlled by parameters $\epsilon$ and $k$,
regulating the per-update privacy budget and the number of $\epsilon$-LDP
gradient updates sent by each user respectively. To further protect the user's
privacy, we introduce a proxy network to reduce the fingerprinting surface by
anonymizing and shuffling the reports before forwarding them to the
recommender. We empirically demonstrate the effectiveness of our framework on
the MovieLens dataset, achieving up to Hit Ratio with K=10 (HR@10) 0.68 on 50k
users with 5k items. Even on the full dataset, we show that it is possible to
achieve reasonable utility with HR@10>0.5 without compromising user privacy.
- Abstract(参考訳): レコメンダシステムは一般的に、ビューやクリックなどの集中的に収集されたユーザーインタラクションデータに基づいてトレーニングされる。
しかしこのプラクティスは、レコメンダの収集と潜在的に機密性の高いデータの処理に関して、重大なプライバシー上の懸念を引き起こす。
近年の文献では,プライバシを意識したレコメンダシステムがいくつか提案されているが,暗黙的なフィードバックとプライバシの交点では,比較的注目されていない。
この欠点に対処するために,ユーザレベルのローカルディファレンシャルプライバシー(ldp)下での暗黙のデータに対して,実用的なフェデレーションレコメンダシステムを提案する。
プライバシとユーティリティのトレードオフはパラメータ$\epsilon$と$k$で制御され、更新されたプライバシ予算と各ユーザが送信する$\epsilon$-LDPグラデーションの更新数を規制する。
ユーザのプライバシーをさらに保護するために,レコメンダに転送する前にレポートを匿名化・シャッフルすることで指紋認証面を低減するプロキシネットワークを導入する。
5k項目の50kユーザに対して,K=10(HR@10)0.68でHit Ratioを達成し,MovieLensデータセット上でフレームワークの有効性を実証的に実証した。
完全なデータセットであっても、ユーザのプライバシを損なうことなく、HR@10>0.5で妥当なユーティリティを実現できることを示す。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Segmented Private Data Aggregation in the Multi-message Shuffle Model [6.436165623346879]
我々は、差分プライバシーのマルチメッセージシャッフルモデルにおいて、セグメント化されたプライベートデータアグリゲーションの研究を開拓した。
当社のフレームワークでは,ユーザに対するフレキシブルなプライバシ保護と,アグリゲーションサーバのための拡張ユーティリティを導入している。
提案手法は,既存手法と比較して推定誤差を約50%削減する。
論文 参考訳(メタデータ) (2024-07-29T01:46:44Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Hiding Your Awful Online Choices Made More Efficient and Secure: A New Privacy-Aware Recommender System [5.397825778465797]
本稿では,プライバシを意識した機械学習アルゴリズムを実用的スケーラビリティと効率のために組み合わせた,プライバシを意識した新たなレコメンデーションシステムを提案する。
メモリ制約の低消費電力SOC(System on Chip)デバイスであっても,1億エントリを含むデータセットのプライベートレコメンデーションを初めて計算可能にする。
論文 参考訳(メタデータ) (2024-05-30T21:08:42Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - Federated Heterogeneous Graph Neural Network for Privacy-preserving
Recommendation [45.39171059168941]
ヘテロジニアス・インフォメーション・ネットワーク (HIN) は、レコメンデーションシステムにおけるデータの分散を緩和するための強力なツールである。
本稿では,HINをクライアント側に保存されたプライベートなHINに分割し,サーバ上で共有する手法を提案する。
我々は、差分プライバシーの観点から、HINベースのフェデレーションレコメンデーション(FedRec)のプライバシー定義を定式化する。
論文 参考訳(メタデータ) (2023-10-18T05:59:41Z) - Towards Differential Privacy in Sequential Recommendation: A Noisy Graph
Neural Network Approach [2.4743508801114444]
ディファレンシャルプライバシは、レコメンダシステムにおけるプライバシを保護するために広く採用されている。
既存の微分プライベートなレコメンデータシステムは、静的および独立な相互作用のみを考慮する。
ノイズの多いグラフニューラルネットアプローチを用いて、識別的プライベートシーケンスレコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-17T03:12:33Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
分散ノード上でのリンクローカル差分プライバシーを用いてグラフニューラルネットワークをトレーニングする。
当社のアプローチでは、グラフトポロジをより悪用するために、グラフのリンクと学位を別々に、プライバシ予算に費やしています。
当社のアプローチは、様々なプライバシー予算の下での精度において、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2023-09-06T17:53:31Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
本稿では,差分プライバシーフレームワークと行列因数分解に基づくプライバシ保護レコメンデーションシステムを提案する。
差分プライバシーは、プライバシを保存する機械学習アルゴリズムを設計するための強力で堅牢な数学的フレームワークであるため、敵が機密性の高いユーザー情報を抽出するのを防ぐことができる。
論文 参考訳(メタデータ) (2023-04-11T13:50:39Z) - FedCL: Federated Contrastive Learning for Privacy-Preserving
Recommendation [98.5705258907774]
FedCLは、プライバシーを十分に保護した効果的なモデルトレーニングのために、高品質な負のサンプルを利用することができる。
まず、各クライアントのローカルモデルを介してローカルユーザデータからユーザ埋め込みを推測し、その後、ローカルディファレンシャルプライバシ(LDP)で摂動する。
個々のユーザ埋め込みにはLDPによる重騒音が伴うため,ノイズの影響を軽減するため,サーバ上にユーザ埋め込みをクラスタ化することを提案する。
論文 参考訳(メタデータ) (2022-04-21T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。