論文の概要: Aggregating From Multiple Target-Shifted Sources
- arxiv url: http://arxiv.org/abs/2105.04051v1
- Date: Sun, 9 May 2021 23:25:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 02:43:36.343736
- Title: Aggregating From Multiple Target-Shifted Sources
- Title(参考訳): 複数のターゲットシフトソースからの集約
- Authors: Changjian Shui, Zijian Li, Jiaqi Li, Christian Gagn\'e, Charles Ling,
Boyu Wang
- Abstract要約: マルチソースドメイン適応は、複数のタスクからの知識を活用して関連するターゲットドメインを予測することを目的としている。
本稿では,近年のソース選択アプローチが失敗している異なるラベル分布のソースドメインを集約する問題を分析した。
提案アルゴリズムは従来の手法とは2つの重要な方法で異なる: モデルは主に境界分布ではなくセマンティック条件分布の類似性を通じて複数のソースを集約する。
- 参考スコア(独自算出の注目度): 7.644958631142882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-source domain adaptation aims at leveraging the knowledge from multiple
tasks for predicting a related target domain. Hence, a crucial aspect is to
properly combine different sources based on their relations. In this paper, we
analyzed the problem for aggregating source domains with different label
distributions, where most recent source selection approaches fail. Our proposed
algorithm differs from previous approaches in two key ways: the model
aggregates multiple sources mainly through the similarity of semantic
conditional distribution rather than marginal distribution; the model proposes
a \emph{unified} framework to select relevant sources for three popular
scenarios, i.e., domain adaptation with limited label on target domain,
unsupervised domain adaptation and label partial unsupervised domain adaption.
We evaluate the proposed method through extensive experiments. The empirical
results significantly outperform the baselines.
- Abstract(参考訳): マルチソースドメイン適応は、複数のタスクからの知識を活用して関連するターゲットドメインを予測することを目的としている。
したがって、重要な側面は、それらの関係に基づいて異なるソースを適切に組み合わせることである。
本稿では,近年のソース選択アプローチが失敗している異なるラベル分布のソースドメインを集約する問題を分析した。
提案手法は従来の手法と大きく異なる: モデルは主に境界分布ではなく, 意味条件分布の類似性を通じて複数のソースを集約する; モデルでは, 3つの一般的なシナリオ,すなわち, 対象領域に限定ラベルを持つドメイン適応, 教師なしドメイン適応, ラベル付き部分教師なしドメイン適応を選択するための, \emph{unified} フレームワークを提案する。
提案手法を広範囲な実験により評価する。
実験結果がベースラインを大きく上回った。
関連論文リスト
- Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA)は、複数のラベル付きソースドメインからモデルを学習することを目的としている。
本稿では,この制限に対処するマルチソースUDAに対して,コントラスト型マルチソースドメイン適応(CMSDA)を提案する。
論文 参考訳(メタデータ) (2021-06-30T14:39:15Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
我々は、Divide-and-Merge Spindle Network (DMSN)と呼ばれる、より高速なR-CNNベースのフレームワークを提案する。
DMSNはドメイン非ネイティブを同時に強化し、識別力を維持することができる。
擬似目標部分集合の最適パラメータを近似する新しい擬似学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-30T03:17:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Multi-source Attention for Unsupervised Domain Adaptation [15.900069711477542]
ソース選択をアテンション学習問題としてモデル化し、特定のターゲットインスタンスのソースに対してアテンションを学習する。
この目的のために、まずソース固有の分類モデルと、ソースとターゲットドメイン間の関連性マップを独立に学習する。
次に、ソース固有のモデルの予測を集約するソースについて、注目度を学習する。
論文 参考訳(メタデータ) (2020-04-14T15:51:02Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
ML-MSDA(Multial Learning Network for Multiple Source Domain Adaptation)を提案する。
相互学習の枠組みのもと,提案手法は対象ドメインと各ソースドメインをペアリングし,条件付き対向ドメイン適応ネットワークを分岐ネットワークとして訓練する。
提案手法は, 比較手法より優れ, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-03-29T04:31:43Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
マルチソース・ドメイン適応(MDA)手法をMSGAN(Multi-source Sentiment Generative Adversarial Network)と呼ぶ。
複数のソースドメインからのデータを扱うために、MSGANはソースドメインとターゲットドメインの両方のデータが同じ分布を共有する、統一された感情潜在空間を見つけることを学ぶ。
4つのベンチマークデータセットで実施された大規模な実験により、MSGANは視覚的感情分類のための最先端のMDAアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-01-12T08:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。