論文の概要: Neural Graph Matching based Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2105.04067v1
- Date: Mon, 10 May 2021 01:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:41:39.061496
- Title: Neural Graph Matching based Collaborative Filtering
- Title(参考訳): ニューラルグラフマッチングに基づく協調フィルタリング
- Authors: Yixin Su and Rui Zhang and Sarah Erfani and Junhao Gan
- Abstract要約: 属性相互作用の2つの異なるタイプ、内部相互作用とクロス相互作用を識別する。
既存のモデルはこれら2種類の属性相互作用を区別しない。
ニューラルグラフマッチングに基づく協調フィルタリングモデル(GMCF)を提案する。
我々のモデルは最先端のモデルより優れている。
- 参考スコア(独自算出の注目度): 13.086302251856756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User and item attributes are essential side-information; their interactions
(i.e., their co-occurrence in the sample data) can significantly enhance
prediction accuracy in various recommender systems. We identify two different
types of attribute interactions, inner interactions and cross interactions:
inner interactions are those between only user attributes or those between only
item attributes; cross interactions are those between user attributes and item
attributes. Existing models do not distinguish these two types of attribute
interactions, which may not be the most effective way to exploit the
information carried by the interactions. To address this drawback, we propose a
neural Graph Matching based Collaborative Filtering model (GMCF), which
effectively captures the two types of attribute interactions through modeling
and aggregating attribute interactions in a graph matching structure for
recommendation. In our model, the two essential recommendation procedures,
characteristic learning and preference matching, are explicitly conducted
through graph learning (based on inner interactions) and node matching (based
on cross interactions), respectively. Experimental results show that our model
outperforms state-of-the-art models. Further studies verify the effectiveness
of GMCF in improving the accuracy of recommendation.
- Abstract(参考訳): ユーザとアイテムの属性は必須の情報であり、その相互作用(サンプルデータにおける共起)は様々な推奨システムにおいて予測精度を大幅に向上させる。
内的相互作用はユーザー属性のみ、またはアイテム属性のみの相互作用であり、内的相互作用はユーザー属性とアイテム属性の間の相互作用である。
既存のモデルはこれらの2種類の属性相互作用を区別しないが、これは相互作用によってもたらされる情報を利用する最も効果的な方法ではないかもしれない。
この欠点に対処するために,我々は,グラフマッチング構造における属性インタラクションのモデル化と集約を通じて,属性インタラクションの2つのタイプを効果的にキャプチャする,ニューラルネットワークを用いた協調フィルタリングモデル(gmcf)を提案する。
本モデルでは,特徴学習と嗜好マッチングという2つの重要な推奨手順を,グラフ学習(内的相互作用に基づく)とノードマッチング(相互相互作用に基づく)によって明確に行う。
実験の結果,本モデルは最先端モデルよりも優れていた。
さらなる研究により、gmcfの推奨精度向上効果が検証された。
関連論文リスト
- Dual-Channel Multiplex Graph Neural Networks for Recommendation [41.834188809480956]
我々は、新しいレコメンデーションフレームワークDual-Channel Multiplex Graph Neural Network (DCMGNN)を導入する。
明示的な振舞いパターン表現学習器を組み込んで、多重ユーザ-イテム相互作用関係からなる振舞いパターンをキャプチャする。
また、関係連鎖表現学習と関係連鎖認識エンコーダを含み、様々な補助関係が対象関係に与える影響を発見する。
論文 参考訳(メタデータ) (2024-03-18T09:56:00Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
マルチビヘイビア・インタラクティブなパターンを意識した動的ユーザ・イテム関係学習に取り組む。
本稿では,動的短期および長期のユーザ・イテム対話パターンを共同でキャプチャする,TGT(Temporal Graph Transformer)レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T15:42:54Z) - Relation-aware Heterogeneous Graph for User Profiling [24.076585294260816]
本稿では,ユーザ・プロファイリングにおける関係性を考慮した異種グラフ手法を提案する。
我々は、不均一なメッセージパッシングに対して、トランスフォーマー方式でクエリ、キー、値のメカニズムを採用する。
実世界の2つのeコマースデータセットの実験を行い、我々のアプローチの大幅なパフォーマンス向上を観察する。
論文 参考訳(メタデータ) (2021-10-14T06:59:30Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Memorize, Factorize, or be Na\"ive: Learning Optimal Feature Interaction
Methods for CTR Prediction [29.343267933348372]
本稿では,各機能間相互作用に最も適したモデリング手法を求めるOPtInterというフレームワークを提案する。
実験の結果,OptInterは最先端のベースライン深部CTRモデルを最大2.21%改善することがわかった。
論文 参考訳(メタデータ) (2021-08-03T03:03:34Z) - Improving Attention Mechanism with Query-Value Interaction [92.67156911466397]
本稿では,問合せ対応の注目値を学習可能な問合せ-値相互作用関数を提案する。
我々のアプローチは、多くの注意に基づくモデルの性能を一貫して改善することができる。
論文 参考訳(メタデータ) (2020-10-08T05:12:52Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - Detecting Beneficial Feature Interactions for Recommender Systems [15.599904548629537]
特徴的相互作用は、レコメンデータシステムにおいて高い精度を達成するために不可欠である。
本稿では,これらの特徴の相互作用を自動的に検出する新しい手法とともに,効果的にモデル化するためのグラフニューラルネットワークアプローチを提案する。
提案手法は,情報ボトルネック原理と統計的相互作用理論により有効であることが証明された。
論文 参考訳(メタデータ) (2020-08-02T06:08:23Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
レコメンデーションシステムでは、ユーザとアイテムは属性に関連付けられ、ユーザはアイテムの好みを表示する。
ユーザ(item)属性をアノテートすることは労働集約的なタスクであるため、属性値が欠落している多くの属性値と不完全であることが多い。
本稿では,共同項目推薦と属性推論のための適応グラフ畳み込みネットワーク(AGCN)アプローチを提案する。
論文 参考訳(メタデータ) (2020-05-25T10:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。