論文の概要: Self-supervised spectral matching network for hyperspectral target
detection
- arxiv url: http://arxiv.org/abs/2105.04078v1
- Date: Mon, 10 May 2021 02:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:54:35.933743
- Title: Self-supervised spectral matching network for hyperspectral target
detection
- Title(参考訳): 超スペクトルターゲット検出のための自己教師付きスペクトルマッチングネットワーク
- Authors: Can Yao, Yuan Yuan, Zhiyu Jiang
- Abstract要約: いくつかのターゲットサンプルから、航空機、車両、船舶などの特定のターゲットピクセルをハイパースペクトル画像全体から識別することを目的としています。
一般に、背景ピクセルは画像の大部分を取り、複雑に分散します。
スペクトル混合に基づく自己監視型パラダイムは、ハイパースペクトルデータのために設計され、効果的な特徴表現を得る。
- 参考スコア(独自算出の注目度): 8.831857715361624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral target detection is a pixel-level recognition problem. Given a
few target samples, it aims to identify the specific target pixels such as
airplane, vehicle, ship, from the entire hyperspectral image. In general, the
background pixels take the majority of the image and complexly distributed. As
a result, the datasets are weak annotated and extremely imbalanced. To address
these problems, a spectral mixing based self-supervised paradigm is designed
for hyperspectral data to obtain an effective feature representation. The model
adopts a spectral similarity based matching network framework. In order to
learn more discriminative features, a pair-based loss is adopted to minimize
the distance between target pixels while maximizing the distances between
target and background. Furthermore, through a background separated step, the
complex unlabeled spectra are downsampled into different sub-categories. The
experimental results on three real hyperspectral datasets demonstrate that the
proposed framework achieves better results compared with the existing
detectors.
- Abstract(参考訳): ハイパースペクトル目標検出はピクセルレベルの認識問題である。
いくつかのターゲットサンプルが与えられた場合、ハイパースペクトル画像全体から、飛行機、乗り物、船などの特定のターゲットピクセルを識別することを目的としている。
一般的に、背景画素は画像の大部分を取り、複雑に分散する。
その結果、データセットは弱く、非常に不均衡になる。
これらの問題に対処するために、スペクトル混合に基づく自己監督パラダイムがハイパースペクトルデータのために設計され、効果的な特徴表現が得られる。
このモデルはスペクトル類似性に基づくマッチングネットワークフレームワークを採用する。
より識別的な特徴を学ぶために、ターゲットと背景の距離を最大化しつつ、ターゲットピクセル間の距離を最小化するためにペアベースロスが採用されている。
さらに、背景分離ステップを経て、複雑なラベルのないスペクトルを異なるサブカテゴリにダウンサンプリングする。
3つの実超スペクトルデータセットの実験結果は、提案フレームワークが既存の検出器よりも優れた結果を得ることを示している。
関連論文リスト
- Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
S2ADetは、高スペクトル画像に固有の豊富なスペクトル情報と空間補完情報を利用する物体検出器である。
S2ADetは既存の最先端メソッドを超え、堅牢で信頼性の高い結果を達成する。
論文 参考訳(メタデータ) (2023-06-14T09:01:50Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - HyperNet: Self-Supervised Hyperspectral Spatial-Spectral Feature
Understanding Network for Hyperspectral Change Detection [19.774857440703038]
HyperNetはピクセルレベルの自己監督型空間スペクトル理解ネットワークである。
有効高スペクトル変化検出のための画素ワイド特徴表現を実現する。
提案したHyperNetの有効性と一般化をテストするために,6つのハイパースペクトルデータセットが採用された。
論文 参考訳(メタデータ) (2022-07-20T03:26:03Z) - Unsupervised Spatial-spectral Hyperspectral Image Reconstruction and
Clustering with Diffusion Geometry [6.279792995020646]
本研究では,高度に混合したハイパースペクトル画像の分割のための空間スペクトル画像再構成と拡散幾何を用いたクラスタリング(DSIRC)アルゴリズムを提案する。
DSIRCは、データ適応空間近傍にスペクトル相関画素を配置し、その画素のスペクトルシグネチャを近隣のピクセルを用いて再構成する。
その結果,画像再構成による空間情報の取り込みにより,画素単位のクラスタリングの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2022-04-28T13:42:12Z) - A 3-stage Spectral-spatial Method for Hyperspectral Image Classification [2.28438857884398]
ハイパースペクトル画像中の画素の分類に空間情報とスペクトル情報の両方を利用する新しいフレームワークを提案する。
6つのベンチマークハイパースペクトルデータセット上での3つの最先端アルゴリズムに対する本手法の優位性を示す。
論文 参考訳(メタデータ) (2022-04-20T08:23:05Z) - A distribution-dependent Mumford-Shah model for unsupervised
hyperspectral image segmentation [3.2116198597240846]
本稿では、新しい教師なしハイパースペクトルセグメンテーションフレームワークを提案する。
これは、MNF(Minimum Noise Fraction)変換によって、デノゲーションと次元の低減ステップから始まる。
我々は、高スペクトルデータの課題に対処するために、新しい頑健な分布依存型インジケータ機能を備えたMS関数を実装した。
論文 参考訳(メタデータ) (2022-03-28T19:57:14Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
高分解能(HR)ハイパースペクトル顔画像は、制御されていない条件下での顔関連コンピュータビジョンタスクにおいて重要な役割を果たす。
本稿では,ハイパースペクトル顔画像への深層学習手法の適用方法について検討する。
限られたトレーニングサンプルを用いたHFSRのためのスペクトル分割集約ネットワーク(SSANet)を提案する。
論文 参考訳(メタデータ) (2021-08-31T02:13:00Z) - Object Disparity [0.0]
本稿では,高密度画素差を直接検出して3次元物体距離検出を行う方法を提案する。
圧縮ネットオブジェクト分散-SSDの例は、Kittiデータセットの分散基底真理と比較した場合の精度で、効率的なオブジェクト分散検出を示すために構築された。
論文 参考訳(メタデータ) (2021-08-18T02:11:28Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
スケーラブルなマルチラベル画像検索のための新しいディープハッシュ法を提案する。
2つの空間の類似性順序を整列するために、新しい階数整合性目的を適用した。
強力な損失関数は、意味的類似性とハミング距離が一致しないサンプルをペナルティ化するように設計されている。
論文 参考訳(メタデータ) (2021-02-02T13:46:58Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。