Event-LSTM: An Unsupervised and Asynchronous Learning-based
Representation for Event-based Data
- URL: http://arxiv.org/abs/2105.04216v1
- Date: Mon, 10 May 2021 09:18:52 GMT
- Title: Event-LSTM: An Unsupervised and Asynchronous Learning-based
Representation for Event-based Data
- Authors: Lakshmi Annamalai, Vignesh Ramanathan, Chetan Singh Thakur
- Abstract summary: Event cameras are activity-driven bio-inspired vision sensors.
We propose Event-LSTM, an unsupervised Auto-Encoder architecture made up of LSTM layers.
We also push state-of-the-art event de-noising forward by introducing memory into the de-noising process.
- Score: 8.931153235278831
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Event cameras are activity-driven bio-inspired vision sensors, thereby
resulting in advantages such as sparsity,high temporal resolution, low latency,
and power consumption. Given the different sensing modality of event camera and
high quality of conventional vision paradigm, event processing is predominantly
solved by transforming the sparse and asynchronous events into 2D grid and
subsequently applying standard vision pipelines. Despite the promising results
displayed by supervised learning approaches in 2D grid generation, these
approaches treat the task in supervised manner. Labeled task specific ground
truth event data is challenging to acquire. To overcome this limitation, we
propose Event-LSTM, an unsupervised Auto-Encoder architecture made up of LSTM
layers as a promising alternative to learn 2D grid representation from event
sequence. Compared to competing supervised approaches, ours is a task-agnostic
approach ideally suited for the event domain, where task specific labeled data
is scarce. We also tailor the proposed solution to exploit asynchronous nature
of event stream, which gives it desirable charateristics such as speed
invariant and energy-efficient 2D grid generation. Besides, we also push
state-of-the-art event de-noising forward by introducing memory into the
de-noising process. Evaluations on activity recognition and gesture recognition
demonstrate that our approach yields improvement over state-of-the-art
approaches, while providing the flexibilty to learn from unlabelled data.
Related papers
- Dynamic Subframe Splitting and Spatio-Temporal Motion Entangled Sparse Attention for RGB-E Tracking [32.86991031493605]
Event-based bionic camera captures dynamic scenes with high temporal resolution and high dynamic range.
We propose a dynamic event subframe splitting strategy to split the event stream into more fine-grained event clusters.
Based on this, we design an event-based sparse attention mechanism to enhance the interaction of event features in temporal and spatial dimensions.
arXiv Detail & Related papers (2024-09-26T06:12:08Z) - EventZoom: A Progressive Approach to Event-Based Data Augmentation for Enhanced Neuromorphic Vision [9.447299017563841]
Dynamic Vision Sensors (DVS) capture event data with high temporal resolution and low power consumption.
Event data augmentation serve as an essential method for overcoming the limitation of scale and diversity in event datasets.
arXiv Detail & Related papers (2024-05-29T08:39:31Z) - MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking [50.26836546224782]
Event-based eye tracking has shown great promise with the high temporal resolution and low redundancy.
The diversity and abruptness of eye movement patterns, including blinking, fixating, saccades, and smooth pursuit, pose significant challenges for eye localization.
This paper proposes a bidirectional long-term sequence modeling and time-varying state selection mechanism to fully utilize contextual temporal information.
arXiv Detail & Related papers (2024-04-18T11:09:25Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Event Voxel Set Transformer for Spatiotemporal Representation Learning on Event Streams [19.957857885844838]
Event cameras are neuromorphic vision sensors that record a scene as sparse and asynchronous event streams.
We propose an attentionaware model named Event Voxel Set Transformer (EVSTr) for efficient representation learning on event streams.
Experiments show that EVSTr achieves state-of-the-art performance while maintaining low model complexity.
arXiv Detail & Related papers (2023-03-07T12:48:02Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
Event cameras are bio-inspired sensors that respond to per-pixel brightness changes in the form of asynchronous and sparse "events"
We present a general framework for converting models trained on synchronous image-like event representations into asynchronous models with identical output.
We show both theoretically and experimentally that this drastically reduces the computational complexity and latency of high-capacity, synchronous neural networks.
arXiv Detail & Related papers (2020-03-20T08:39:49Z) - A Differentiable Recurrent Surface for Asynchronous Event-Based Data [19.605628378366667]
We propose Matrix-LSTM, a grid of Long Short-Term Memory (LSTM) cells that efficiently process events and learn end-to-end task-dependent event-surfaces.
Compared to existing reconstruction approaches, our learned event-surface shows good flexibility and on optical flow estimation.
It improves the state-of-the-art of event-based object classification on the N-Cars dataset.
arXiv Detail & Related papers (2020-01-10T14:09:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.