Improving the Transient Times for Distributed Stochastic Gradient
Methods
- URL: http://arxiv.org/abs/2105.04851v1
- Date: Tue, 11 May 2021 08:09:31 GMT
- Title: Improving the Transient Times for Distributed Stochastic Gradient
Methods
- Authors: Kun Huang and Shi Pu
- Abstract summary: We study a distributed gradient algorithm, called exact diffusion adaptive stepsizes (EDAS)
We show EDAS achieves the same network independent convergence rate as centralized gradient descent (SGD)
To the best of our knowledge, EDAS achieves the shortest time when the average of the $n$ cost functions is strongly convex.
- Score: 5.215491794707911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the distributed optimization problem where $n$ agents each
possessing a local cost function, collaboratively minimize the average of the
$n$ cost functions over a connected network. Assuming stochastic gradient
information is available, we study a distributed stochastic gradient algorithm,
called exact diffusion with adaptive stepsizes (EDAS) adapted from the Exact
Diffusion method and NIDS and perform a non-asymptotic convergence analysis. We
not only show that EDAS asymptotically achieves the same network independent
convergence rate as centralized stochastic gradient descent (SGD) for
minimizing strongly convex and smooth objective functions, but also
characterize the transient time needed for the algorithm to approach the
asymptotic convergence rate, which behaves as
$K_T=\mathcal{O}\left(\frac{n}{1-\lambda_2}\right)$, where $1-\lambda_2$ stands
for the spectral gap of the mixing matrix. To the best of our knowledge, EDAS
achieves the shortest transient time when the average of the $n$ cost functions
is strongly convex and each cost function is smooth. Numerical simulations
further corroborate and strengthen the obtained theoretical results.
Related papers
- Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
We prove an $mathcalO(t-1)$ lower bound rate for the OT map, using the similarity between Laguerre cells estimation and density support estimation.
To nearly achieve the desired fast rate, we design an entropic regularization scheme decreasing with the number of samples.
arXiv Detail & Related papers (2024-05-23T11:46:03Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence [9.11726703830074]
In this paper, we consider solving the distributed optimization problem under the communication restricted setting.
We show the method over com-pressed exact diffusion termed CEDAS"
In particular, when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when
arXiv Detail & Related papers (2023-01-14T09:49:15Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
We propose a new technique, em variance controlled gradient (VCSG), to improve the performance of the reduced gradient (SVRG)
$lambda$ is introduced in VCSG to avoid over-reducing a variance by SVRG.
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ number of gradient evaluations, which improves the leading gradient complexity.
arXiv Detail & Related papers (2021-02-19T12:22:56Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.