Adaptive Federated Learning Over the Air
- URL: http://arxiv.org/abs/2403.06528v1
- Date: Mon, 11 Mar 2024 09:10:37 GMT
- Title: Adaptive Federated Learning Over the Air
- Authors: Chenhao Wang, Zihan Chen, Nikolaos Pappas, Howard H. Yang, Tony Q. S.
Quek, H. Vincent Poor
- Abstract summary: We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
- Score: 108.62635460744109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a federated version of adaptive gradient methods, particularly
AdaGrad and Adam, within the framework of over-the-air model training. This
approach capitalizes on the inherent superposition property of wireless
channels, facilitating fast and scalable parameter aggregation. Meanwhile, it
enhances the robustness of the model training process by dynamically adjusting
the stepsize in accordance with the global gradient update. We derive the
convergence rate of the training algorithms, encompassing the effects of
channel fading and interference, for a broad spectrum of nonconvex loss
functions. Our analysis shows that the AdaGrad-based algorithm converges to a
stationary point at the rate of $\mathcal{O}( \ln{(T)} /{ T^{ 1 -
\frac{1}{\alpha} } } )$, where $\alpha$ represents the tail index of the
electromagnetic interference. This result indicates that the level of
heavy-tailedness in interference distribution plays a crucial role in the
training efficiency: the heavier the tail, the slower the algorithm converges.
In contrast, an Adam-like algorithm converges at the $\mathcal{O}( 1/T )$ rate,
demonstrating its advantage in expediting the model training process. We
conduct extensive experiments that corroborate our theoretical findings and
affirm the practical efficacy of our proposed federated adaptive gradient
methods.
Related papers
- Towards Hyper-parameter-free Federated Learning [1.3682156035049038]
We introduce algorithms for automated scaling of global model updates.
In first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective.
Second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the value server required for computing the scaling factor.
arXiv Detail & Related papers (2024-08-30T09:35:36Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adaptive Learning Rate and Momentum for Training Deep Neural Networks [0.0]
We develop a fast training method motivated by the nonlinear Conjugate Gradient (CG) framework.
Experiments in image classification datasets show that our method yields faster convergence than other local solvers.
arXiv Detail & Related papers (2021-06-22T05:06:56Z) - A Distributed Training Algorithm of Generative Adversarial Networks with
Quantized Gradients [8.202072658184166]
We propose a distributed GANs training algorithm with quantized gradient, dubbed DQGAN, which is the first distributed training method with quantized gradient for GANs.
The new method trains GANs based on a specific single machine algorithm called Optimistic Mirror Descent (OMD) algorithm, and is applicable to any gradient compression method that satisfies a general $delta$-approximate compressor.
Theoretically, we establish the non-asymptotic convergence of DQGAN algorithm to first-order stationary point, which shows that the proposed algorithm can achieve a linear speedup in the
arXiv Detail & Related papers (2020-10-26T06:06:43Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite
Epochs [25.158203665218164]
We show that adaptive gradient methods can be faster than random shuffling SGD after finite time.
To the best of our knowledge, it is the first to demonstrate that adaptive gradient methods can be faster than SGD after finite time.
arXiv Detail & Related papers (2020-06-12T09:39:47Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.