Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach
- URL: http://arxiv.org/abs/2105.04869v1
- Date: Tue, 11 May 2021 08:46:51 GMT
- Title: Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach
- Authors: Pawan Goyal and Peter Benner
- Abstract summary: We blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations.
We obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime.
We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks.
- Score: 9.36739413306697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering dynamical models to describe underlying dynamical behavior is
essential to draw decisive conclusions and engineering studies, e.g.,
optimizing a process. Experimental data availability notwithstanding has
increased significantly, but interpretable and explainable models in science
and engineering yet remain incomprehensible. In this work, we blend machine
learning and dictionary-based learning with numerical analysis tools to
discover governing differential equations from noisy and sparsely-sampled
measurement data. We utilize the fact that given a dictionary containing huge
candidate nonlinear functions, dynamical models can often be described by a few
appropriately chosen candidates. As a result, we obtain interpretable and
parsimonious models which are prone to generalize better beyond the sampling
regime. Additionally, we integrate a numerical integration framework with
dictionary learning that yields differential equations without requiring or
approximating derivative information at any stage. Hence, it is utterly
effective in corrupted and sparsely-sampled data. We discuss its extension to
governing equations, containing rational nonlinearities that typically appear
in biological networks. Moreover, we generalized the method to governing
equations that are subject to parameter variations and externally controlled
inputs. We demonstrate the efficiency of the method to discover a number of
diverse differential equations using noisy measurements, including a model
describing neural dynamics, chaotic Lorenz model, Michaelis-Menten Kinetics,
and a parameterized Hopf normal form.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
We introduce HyperSINDy, a framework for modeling dynamics via a deep generative model of sparse governing equations from data.
Once trained, HyperSINDy generates dynamics via a differential equation whose coefficients are driven by a white noise.
In experiments, HyperSINDy recovers ground truth governing equations, with learnedity scaling to match that of the data.
arXiv Detail & Related papers (2023-10-07T14:41:59Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements.
In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method.
arXiv Detail & Related papers (2021-09-23T15:43:45Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Data-Driven Discovery of Coarse-Grained Equations [0.0]
Multiscale modeling and simulations are two areas where learning on simulated data can lead to such discovery.
We replace the human discovery of such models with a machine-learning strategy based on sparse regression that can be executed in two modes.
A series of examples demonstrates the accuracy, robustness, and limitations of our approach to equation discovery.
arXiv Detail & Related papers (2020-01-30T23:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.