Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components
- URL: http://arxiv.org/abs/2102.07819v1
- Date: Mon, 15 Feb 2021 19:56:48 GMT
- Title: Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components
- Authors: Alexander Wikner, Jaideep Pathak, Brian R. Hunt, Istvan Szunyogh,
Michelle Girvan, and Edward Ott
- Abstract summary: We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of data-assisted forecasting of chaotic dynamical
systems when the available data is in the form of noisy partial measurements of
the past and present state of the dynamical system. Recently there have been
several promising data-driven approaches to forecasting of chaotic dynamical
systems using machine learning. Particularly promising among these are hybrid
approaches that combine machine learning with a knowledge-based model, where a
machine-learning technique is used to correct the imperfections in the
knowledge-based model. Such imperfections may be due to incomplete
understanding and/or limited resolution of the physical processes in the
underlying dynamical system, e.g., the atmosphere or the ocean. Previously
proposed data-driven forecasting approaches tend to require, for training,
measurements of all the variables that are intended to be forecast. We describe
a way to relax this assumption by combining data assimilation with machine
learning. We demonstrate this technique using the Ensemble Transform Kalman
Filter (ETKF) to assimilate synthetic data for the 3-variable Lorenz system and
for the Kuramoto-Sivashinsky system, simulating model error in each case by a
misspecified parameter value. We show that by using partial measurements of the
state of the dynamical system, we can train a machine learning model to improve
predictions made by an imperfect knowledge-based model.
Related papers
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements.
In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method.
arXiv Detail & Related papers (2021-09-23T15:43:45Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
We present a unifying framework for blending mechanistic and machine-learning approaches to identify dynamical systems from data.
We cast the problem in both continuous- and discrete-time, for problems in which the model error is memoryless and in which it has significant memory.
We find that hybrid methods substantially outperform solely data-driven approaches in terms of data hunger, demands for model complexity, and overall predictive performance.
arXiv Detail & Related papers (2021-07-14T12:47:48Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
We attempt to utilize machine learning as the essential tool for integrating pasttemporal data into predictions.
We propose combining two approaches: (i) a parallel machine learning prediction scheme; and (ii) a hybrid technique, for a composite prediction system composed of a knowledge-based component and a machine-learning-based component.
We demonstrate that not only can this method combining (i) and (ii) be scaled to give excellent performance for very large systems, but also that the length of time series data needed to train our multiple, parallel machine learning components is dramatically less than that necessary without parallelization.
arXiv Detail & Related papers (2020-02-10T23:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.