Forecasting consumer confidence through semantic network analysis of
online news
- URL: http://arxiv.org/abs/2105.04900v2
- Date: Fri, 21 Jul 2023 11:04:29 GMT
- Title: Forecasting consumer confidence through semantic network analysis of
online news
- Authors: A. Fronzetti Colladon, F. Grippa, B. Guardabascio, G. Costante, F.
Ravazzolo
- Abstract summary: This research studies the impact of online news on social and economic consumer perceptions through semantic network analysis.
Using over 1.8 million online articles on Italian media covering four years, we calculate the semantic importance of specific economic-related keywords.
Results show a strong predictive power for the judgments about the current households and national situation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research studies the impact of online news on social and economic
consumer perceptions through semantic network analysis. Using over 1.8 million
online articles on Italian media covering four years, we calculate the semantic
importance of specific economic-related keywords to see if words appearing in
the articles could anticipate consumers' judgments about the economic situation
and the Consumer Confidence Index. We use an innovative approach to analyze big
textual data, combining methods and tools of text mining and social network
analysis. Results show a strong predictive power for the judgments about the
current households and national situation. Our indicator offers a complementary
approach to estimating consumer confidence, lessening the limitations of
traditional survey-based methods.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Explainable assessment of financial experts' credibility by classifying social media forecasts and checking the predictions with actual market data [6.817247544942709]
We propose a credibility assessment solution for financial creators in social media that combines Natural Language Processing and Machine Learning.
The reputation of the contributors is assessed by automatically classifying their forecasts on asset values by type and verifying these predictions with actual market data.
The system provides natural language explanations of its decisions based on a model-agnostic analysis of relevant features.
arXiv Detail & Related papers (2024-06-17T08:08:03Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - 5-Star Hotel Customer Satisfaction Analysis Using Hybrid Methodology [0.0]
Our research suggests a new way to find factors for customer satisfaction through review data.
Unlike many studies on customer satisfaction that have been conducted in the past, our research has a novelty of the thesis.
arXiv Detail & Related papers (2022-09-26T04:53:10Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Weak Supervision in Analysis of News: Application to Economic Policy
Uncertainty [0.0]
Our work focuses on studying the potential of textual data, in particular news pieces, for measuring economic policy uncertainty (EPU)
Economic policy uncertainty is defined as the public's inability to predict the outcomes of their decisions under new policies and future economic fundamentals.
Our work proposes a machine learning based solution involving weak supervision to classify news articles with regards to economic policy uncertainty.
arXiv Detail & Related papers (2022-08-10T09:08:29Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
We present an approach for predicting trust links between peers in social media.
We propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis.
Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset.
arXiv Detail & Related papers (2021-11-11T19:40:51Z) - Uncover Residential Energy Consumption Patterns Using Socioeconomic and
Smart Meter Data [2.9340691207364786]
We analyze the real-world smart meter data and extract load patterns using K-Medoids clustering.
We develop an analytical framework with feature selection and deep learning models to estimate the relationship between load patterns and socioeconomic features.
arXiv Detail & Related papers (2021-04-12T01:57:14Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
We propose to predict consumers' purchases based on their facial features and purchasing histories.
We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers.
Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
arXiv Detail & Related papers (2020-07-14T06:06:41Z) - A BERT based Sentiment Analysis and Key Entity Detection Approach for
Online Financial Texts [4.834766555659253]
We propose a sentiment analysis and key entity detection approach based on BERT, which is applied in online financial text mining and public opinion analysis in social media.
Experimental results show that the performance of our approach is generally higher than SVM, LR, NBM, and BERT for two financial sentiment analysis and key entity detection datasets.
arXiv Detail & Related papers (2020-01-14T13:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.