Using Deep Neural Networks to Predict and Improve the Performance of
Polar Codes
- URL: http://arxiv.org/abs/2105.04922v1
- Date: Tue, 11 May 2021 10:24:51 GMT
- Title: Using Deep Neural Networks to Predict and Improve the Performance of
Polar Codes
- Authors: Mathieu L\'eonardon and Vincent Gripon
- Abstract summary: We introduce a methodology that consists in training deep neural networks to predict the frame error rate of polar codes based on their frozen bit construction sequence.
We showcase on generated datasets the ability of the proposed methodology to produce codes more efficient than those used to train the neural networks.
- Score: 3.6804038214708563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Polar codes can theoretically achieve very competitive Frame Error Rates. In
practice, their performance may depend on the chosen decoding procedure, as
well as other parameters of the communication system they are deployed upon. As
a consequence, designing efficient polar codes for a specific context can
quickly become challenging. In this paper, we introduce a methodology that
consists in training deep neural networks to predict the frame error rate of
polar codes based on their frozen bit construction sequence. We introduce an
algorithm based on Projected Gradient Descent that leverages the gradient of
the neural network function to generate promising frozen bit sequences. We
showcase on generated datasets the ability of the proposed methodology to
produce codes more efficient than those used to train the neural networks, even
when the latter are selected among the most efficient ones.
Related papers
- Erasure Coded Neural Network Inference via Fisher Averaging [28.243239815823205]
Erasure-coded computing has been successfully used in cloud systems to reduce tail latency caused by factors such as straggling servers and heterogeneous traffic variations.
We design a method to code over neural networks, that is, given two or more neural network models, how to construct a coded model whose output is a linear combination of the outputs of the given neural networks.
We conduct experiments to perform erasure coding over neural networks trained on real-world vision datasets and show that the accuracy of the decoded outputs using COIN is significantly higher than other baselines.
arXiv Detail & Related papers (2024-09-02T18:46:26Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
In this paper, we explore an intriguing avenue for enhancing algorithm effectiveness through exploiting the knowledge blindness of neural network.
Our approach centers around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double quantum dot system.
By leveraging prediction generated by the neural network, we are able to guide the optimization process to escape local optima.
arXiv Detail & Related papers (2023-07-27T09:11:53Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Teaching a neural network with non-tunable exciton-polariton nodes [0.0]
We propose a system of non-tunable exciton-polariton nodes and an efficient teaching method.
We demonstrate experimentally that the classification accuracy in the MNIST handwritten digit benchmark is greatly improved.
arXiv Detail & Related papers (2021-07-23T12:04:38Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time.
Recent studies have focused on a "nested dropout" layer, which is able to order the nodes of a layer by importance during training.
arXiv Detail & Related papers (2021-01-27T12:34:58Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
We propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems.
The proposed learning rule supports multiple spikes fired by hidden neurons, and yet is stable by relying on firstspike responses generated by a deterministic output layer.
We also explore several distinct spike-based encoding strategies in order to form compact representations of input data.
arXiv Detail & Related papers (2020-08-16T15:34:48Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.