The Cascaded Forward Algorithm for Neural Network Training
- URL: http://arxiv.org/abs/2303.09728v3
- Date: Mon, 11 Dec 2023 08:20:14 GMT
- Title: The Cascaded Forward Algorithm for Neural Network Training
- Authors: Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, Haibin Ling
- Abstract summary: We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
- Score: 61.06444586991505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backpropagation algorithm has been widely used as a mainstream learning
procedure for neural networks in the past decade, and has played a significant
role in the development of deep learning. However, there exist some limitations
associated with this algorithm, such as getting stuck in local minima and
experiencing vanishing/exploding gradients, which have led to questions about
its biological plausibility. To address these limitations, alternative
algorithms to backpropagation have been preliminarily explored, with the
Forward-Forward (FF) algorithm being one of the most well-known. In this paper
we propose a new learning framework for neural networks, namely Cascaded
Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded
block, which does not require generation of additional negative samples and
thus leads to a more efficient process at both training and testing. Moreover,
in our framework each block can be trained independently, so it can be easily
deployed into parallel acceleration systems. The proposed method is evaluated
on four public image classification benchmarks, and the experimental results
illustrate significant improvement in prediction accuracy in comparison with
the baseline.
Related papers
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
We present a family of BP-based message-passing algorithms with a reinforcement field that biases towards locally entropic distributions.
These algorithms are capable of training multi-layer neural networks with discrete weights and activations with performance comparable to SGD-inspired solutions.
arXiv Detail & Related papers (2021-10-27T16:52:26Z) - Sparse Deep Learning: A New Framework Immune to Local Traps and
Miscalibration [12.05471394131891]
We provide a new framework for sparse deep learning, which has the above issues addressed in a coherent way.
We lay down a theoretical foundation for sparse deep learning and propose prior annealing algorithms for learning sparse neural networks.
arXiv Detail & Related papers (2021-10-01T21:16:34Z) - Benchmarking the Accuracy and Robustness of Feedback Alignment
Algorithms [1.2183405753834562]
Backpropagation is the default algorithm for training deep neural networks due to its simplicity, efficiency and high convergence rate.
In recent years, more biologically plausible learning methods have been proposed.
BioTorch is a software framework to create, train, and benchmark biologically motivated neural networks.
arXiv Detail & Related papers (2021-08-30T18:02:55Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Improving the Backpropagation Algorithm with Consequentialism Weight
Updates over Mini-Batches [0.40611352512781856]
We show that it is possible to consider a multi-layer neural network as a stack of adaptive filters.
We introduce a better algorithm by predicting then emending the adverse consequences of the actions that take place in BP even before they happen.
Our experiments show the usefulness of our algorithm in the training of deep neural networks.
arXiv Detail & Related papers (2020-03-11T08:45:36Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z) - An improved online learning algorithm for general fuzzy min-max neural
network [11.631815277762257]
This paper proposes an improved version of the current online learning algorithm for a general fuzzy min-max neural network (GFMM)
The proposed approach does not use the contraction process for overlapping hyperboxes, which is more likely to increase the error rate.
In order to reduce the sensitivity to the training samples presentation order of this new on-line learning algorithm, a simple ensemble method is also proposed.
arXiv Detail & Related papers (2020-01-08T06:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.