論文の概要: WildGait: Learning Gait Representations from Raw Surveillance Streams
- arxiv url: http://arxiv.org/abs/2105.05528v2
- Date: Thu, 13 May 2021 08:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-14 11:31:36.962175
- Title: WildGait: Learning Gait Representations from Raw Surveillance Streams
- Title(参考訳): WildGait: ローサーベイランスストリームからの歩行表現の学習
- Authors: Adrian Cosma, Emilian Radoi
- Abstract要約: 歩行認識の既存の方法は、単一の人がカメラの前で直線で複数回歩いている協調歩行シナリオを必要とします。
本稿では,多数の自動注釈付きスケルトン配列上で時空間グラフ畳み込みネットワークを訓練する,新しい弱教師付き学習フレームワークwildgaitを提案する。
以上の結果から,現状のポーズに基づく歩容認識ソリューションは,微調整により認識精度を上回った。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of gait for person identification has important advantages such as
being non-invasive, unobtrusive, not requiring cooperation and being less
likely to be obscured compared to other biometrics. Existing methods for gait
recognition require cooperative gait scenarios, in which a single person is
walking multiple times in a straight line in front of a camera. We aim to
address the hard challenges of real-world scenarios in which camera feeds
capture multiple people, who in most cases pass in front of the camera only
once. We address privacy concerns by using only motion information of walking
individuals, with no identifiable appearance-based information. As such, we
propose a novel weakly supervised learning framework, WildGait, which consists
of training a Spatio-Temporal Graph Convolutional Network on a large number of
automatically annotated skeleton sequences obtained from raw, real-world,
surveillance streams to learn useful gait signatures. Our results show that,
with fine-tuning, we surpass in terms of recognition accuracy the current
state-of-the-art pose-based gait recognition solutions. Our proposed method is
reliable in training gait recognition methods in unconstrained environments,
especially in settings with scarce amounts of annotated data. We obtain an
accuracy of 84.43% on CASIA-B and 71.3% on FVG, while using only 10% of the
available training data. This consists of 29% and 38% accuracy improvement on
the respective datasets when using the same network without pretraining.
- Abstract(参考訳): 個人識別における歩行の使用は、非侵襲的、控えめで、協力を必要とせず、他のバイオメトリックスと比べて見えにくいといった重要な利点がある。
既存の歩行認識手法では、カメラの前で1人が何回も直線で歩き回っているような、協調歩行シナリオが必要となる。
我々は、カメラフィードが複数の人を捉え、多くの場合、カメラの前に1回しか通らない現実のシナリオの難題に対処することを目指している。
我々は,歩行者の動作情報のみを使用して,見た目に基づく情報を持たないプライバシー問題に対処する。
そこで本研究では,生のリアルタイム監視ストリームから得られた多数の自動注釈付きスケルトンシーケンス上で時空間グラフ畳み込みネットワークを訓練し,有用な歩行シグネチャを学習する,新しい弱教師付き学習フレームワークwildgaitを提案する。
以上の結果から,現状のポーズに基づく歩容認識ソリューションは,微調整により認識精度を上回った。
提案手法は,制約のない環境,特にアノテート量が少ない環境での歩行認識の訓練において信頼性が高い。
CASIA-Bでは84.43%、FVGでは71.3%、トレーニングデータでは10%に過ぎなかった。
これは、事前トレーニングせずに同じネットワークを使用する場合の、各データセットの29%と38%の精度向上からなる。
関連論文リスト
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - GaitFormer: Learning Gait Representations with Noisy Multi-Task Learning [4.831663144935878]
本稿では,217Kの匿名トラックレットを含む歩行分析システムのための最大データセットであるDenseGaitを提案する。
また、CASIA-Bで92.5%、FVGで85.33%の精度を実現するトランスフォーマーベースのモデルであるGaitFormerを提案する。
論文 参考訳(メタデータ) (2023-10-30T10:28:44Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
本研究では,屋外シナリオにおける人間認証のためのGADER(GAit Detection and Recognition)フレームワークを提案する。
GADERは、歩行情報を含むフレームのみを使用する新しい歩行認識手法により識別的特徴を構築する。
室内および屋外のデータセットに一貫した改善を示すため,複数の歩行ベースライン(SoTA)について評価を行った。
論文 参考訳(メタデータ) (2023-07-27T01:53:57Z) - HomE: Homography-Equivariant Video Representation Learning [62.89516761473129]
マルチビュービデオの表現学習のための新しい手法を提案する。
提案手法は異なる視点間の暗黙的なマッピングを学習し,近隣の視点間のホモグラフィ関係を維持する表現空間を決定づける。
動作分類では,UCF101データセットの96.4%の3倍精度が得られた。
論文 参考訳(メタデータ) (2023-06-02T15:37:43Z) - RealGait: Gait Recognition for Person Re-Identification [79.67088297584762]
我々は,既存の映像人物の再識別課題からシルエットを抽出し,制約のない方法で歩く1,404人からなる新たな歩行データセットを構築した。
以上の結果から、実際の監視シナリオにおける歩行による認識は実現可能であり、その基盤となる歩行パターンが、実際にビデオの人物認識が機能する真の理由である可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-13T06:30:56Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
歩行認識は、歩行が距離で認識することができるユニークな生体測定機能であるため、人間の識別に重要な役割を果たします。
既存の歩行認識法は歩行系列から歩行特徴を異なる方法で学習することができるが、歩行認識の性能はラベル付きデータに苦しむ。
本研究では, 事前学習プロセスとして, 多種多様でラベルなしの歩行データを活用した自己監視歩行認識手法であるSelfGaitを提案する。
論文 参考訳(メタデータ) (2021-03-27T05:15:39Z) - Fast Uncertainty Quantification for Deep Object Pose Estimation [91.09217713805337]
深層学習に基づくオブジェクトポーズ推定は、しばしば信頼できない、自信過剰である。
本研究では,6-DoFオブジェクトのポーズ推定のための,シンプルで効率的かつプラグアンドプレイなUQ手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T06:51:55Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
本稿では,カメラごとの個人識別アノテーションに基づく新しい人物識別パラダイムを提案する。
これにより、最も時間がかかり、面倒なカメラ間IDラベリングプロセスがなくなる。
MATE(Multi-tAsk mulTi-labEl)Deep Learning method for intra-Camera Supervised (ICS) person re-id。
論文 参考訳(メタデータ) (2020-02-12T15:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。