Is Gender "In-the-Wild" Inference Really a Solved Problem?
- URL: http://arxiv.org/abs/2105.05794v1
- Date: Wed, 12 May 2021 17:05:03 GMT
- Title: Is Gender "In-the-Wild" Inference Really a Solved Problem?
- Authors: Tiago Roxo and Hugo Proen\c{c}a
- Abstract summary: We report an extensive analysis of the feasibility of its inference regarding image (resolution, luminosity, and blurriness) and subject-based features.
Using three state-of-the-art datasets, we correlate feature analysis with gender inference accuracy.
We analyze face-based gender inference and assess the pose effect on it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Soft biometrics analysis is seen as an important research topic, given its
relevance to various applications. However, even though it is frequently seen
as a solved task, it can still be very hard to perform in wild conditions,
under varying image conditions, uncooperative poses, and occlusions.
Considering the gender trait as our topic of study, we report an extensive
analysis of the feasibility of its inference regarding image (resolution,
luminosity, and blurriness) and subject-based features (face and body keypoints
confidence). Using three state-of-the-art datasets (PETA, PA-100K, RAP) and
five Person Attribute Recognition models, we correlate feature analysis with
gender inference accuracy using the Shapley value, enabling us to perceive the
importance of each image/subject-based feature. Furthermore, we analyze
face-based gender inference and assess the pose effect on it. Our results
suggest that: 1) image-based features are more influential for low-quality
data; 2) an increase in image quality translates into higher subject-based
feature importance; 3) face-based gender inference accuracy correlates with
image quality increase; and 4) subjects' frontal pose promotes an implicit
attention towards the face. The reported results are seen as a basis for
subsequent developments of inference approaches in uncontrolled outdoor
environments, which typically correspond to visual surveillance conditions.
Related papers
- Structuring Quantitative Image Analysis with Object Prominence [0.0]
We suggest carefully considering objects' prominence as an essential step in analyzing images as data.
Our approach combines qualitative analyses with the scalability of quantitative approaches.
arXiv Detail & Related papers (2024-08-30T19:05:28Z) - Understanding Pose and Appearance Disentanglement in 3D Human Pose
Estimation [72.50214227616728]
Several methods have proposed to learn image representations in a self-supervised fashion so as to disentangle the appearance information from the pose one.
We study disentanglement from the perspective of the self-supervised network, via diverse image synthesis experiments.
We design an adversarial strategy focusing on generating natural appearance changes of the subject, and against which we could expect a disentangled network to be robust.
arXiv Detail & Related papers (2023-09-20T22:22:21Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
We study how gender is presented differently in text-to-image models.
By probing gender indicators in the input text, we quantify the frequency differences of presentation-centric attributes.
We propose an automatic method to estimate such differences.
arXiv Detail & Related papers (2023-02-07T18:52:22Z) - Explaining Bias in Deep Face Recognition via Image Characteristics [9.569575076277523]
We evaluate ten state-of-the-art face recognition models, comparing their fairness in terms of security and usability on two data sets.
We then analyze the impact of image characteristics on models performance.
arXiv Detail & Related papers (2022-08-23T17:18:23Z) - Robustness Disparities in Commercial Face Detection [72.25318723264215]
We present the first of its kind detailed benchmark of the robustness of three such systems: Amazon Rekognition, Microsoft Azure, and Google Cloud Platform.
We generally find that photos of individuals who are older, masculine presenting, of darker skin type, or have dim lighting are more susceptible to errors than their counterparts in other identities.
arXiv Detail & Related papers (2021-08-27T21:37:16Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - Faces in the Wild: Efficient Gender Recognition in Surveillance
Conditions [0.0]
We present frontal and wild face versions of three well-known surveillance datasets.
We propose a model that effectively and dynamically combines facial and body information, which makes it suitable for gender recognition in wild conditions.
Our model combines facial and body information through a learnable fusion matrix and a channel-attention sub-network, focusing on the most influential body parts according to the specific image/subject features.
arXiv Detail & Related papers (2021-07-14T17:02:23Z) - Multi-modal Affect Analysis using standardized data within subjects in
the Wild [8.05417723395965]
We introduce the affective recognition method focusing on facial expression (EXP) and valence-arousal calculation.
Our proposed framework can improve estimation accuracy and robustness effectively.
arXiv Detail & Related papers (2021-07-07T04:18:28Z) - Automatic Main Character Recognition for Photographic Studies [78.88882860340797]
Main characters in images are the most important humans that catch the viewer's attention upon first look.
Identifying the main character in images plays an important role in traditional photographic studies and media analysis.
We propose a method for identifying the main characters using machine learning based human pose estimation.
arXiv Detail & Related papers (2021-06-16T18:14:45Z) - MAFER: a Multi-resolution Approach to Facial Expression Recognition [9.878384185493623]
We propose a two-step learning procedure, named MAFER, to train Deep Learning models tasked with recognizing facial expressions.
A relevant feature of MAFER is that it is task-agnostic, i.e., it can be used complementarily to other objective-related techniques.
arXiv Detail & Related papers (2021-05-06T07:26:58Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
The paper focuses on large in-the-wild databases, i.e., Aff-Wild and Aff-Wild2.
It presents the design of two classes of deep neural networks trained with these databases.
A novel multi-task and holistic framework is presented which is able to jointly learn and effectively generalize and perform affect recognition.
arXiv Detail & Related papers (2021-03-29T17:36:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.