論文の概要: SimNet: Computer Architecture Simulation using Machine Learning
- arxiv url: http://arxiv.org/abs/2105.05821v1
- Date: Wed, 12 May 2021 17:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-13 12:14:37.326415
- Title: SimNet: Computer Architecture Simulation using Machine Learning
- Title(参考訳): SimNet: 機械学習を用いたコンピュータアーキテクチャシミュレーション
- Authors: Lingda Li, Santosh Pandey, Thomas Flynn, Hang Liu, Noel Wheeler,
Adolfy Hoisie
- Abstract要約: この研究では、機械学習(ML)を使用して離散イベントシミュレーションを加速する共同作業について説明します。
提案した命令遅延予測器に基づいて,GPU加速並列シミュレータを実装した。
そのシミュレーション精度とスループットを、最先端シミュレータに対して検証し、評価する。
- 参考スコア(独自算出の注目度): 3.7019798164954336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While cycle-accurate simulators are essential tools for architecture
research, design, and development, their practicality is limited by an
extremely long time-to-solution for realistic problems under investigation.
This work describes a concerted effort, where machine learning (ML) is used to
accelerate discrete-event simulation. First, an ML-based instruction latency
prediction framework that accounts for both static instruction/architecture
properties and dynamic execution context is constructed. Then, a
GPU-accelerated parallel simulator is implemented based on the proposed
instruction latency predictor, and its simulation accuracy and throughput are
validated and evaluated against a state-of-the-art simulator. Leveraging modern
GPUs, the ML-based simulator outperforms traditional simulators significantly.
- Abstract(参考訳): サイクル精度シミュレータは、建築研究、設計、開発に欠かせないツールであるが、その実用性は、調査中の現実的な問題に対する極端に長い時間的解決によって制限されている。
この研究は、機械学習(ML)を用いて離散イベントシミュレーションを加速する、協調的な取り組みを説明する。
まず、静的命令/アーキテクチャ特性と動的実行コンテキストの両方を考慮したMLベースの命令遅延予測フレームワークを構築する。
次に、提案した命令遅延予測器に基づいてGPU加速並列シミュレータを実装し、そのシミュレーション精度とスループットを最先端シミュレータに対して検証し評価する。
最新のgpuを活用することで、mlベースのシミュレータは従来のシミュレータを大幅に上回っている。
関連論文リスト
- BeSimulator: A Large Language Model Powered Text-based Behavior Simulator [28.112491177744783]
本研究では,BeSimulatorをテキストベースの環境下での動作シミュレーションの試みとして紹介する。
BeSimulatorはシナリオを一般化し、長距離複素シミュレーションを実現する。
論文 参考訳(メタデータ) (2024-09-24T08:37:04Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Tao: Re-Thinking DL-based Microarchitecture Simulation [8.501776613988484]
既存のマイクロアーキテクチャシミュレータは、異なる側面で優れ、不足している。
ディープラーニング(DL)ベースのシミュレーションは驚くほど高速で、精度は極めて高いが、適切な低レベルのマイクロアーキテクチャのパフォーマンス指標を提供することができない。
本稿では,3つの主要な貢献により,DLに基づくシミュレーションを再設計するTAOを紹介する。
論文 参考訳(メタデータ) (2024-04-16T21:45:10Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - CityFlowER: An Efficient and Realistic Traffic Simulator with Embedded
Machine Learning Models [25.567208505574072]
CityFlowERは、効率的で現実的な都市交通シミュレーションのための高度なシミュレータである。
シミュレータ内に機械学習モデルが組み込まれており、外部APIインタラクションの必要がなくなる。
これは、特に大規模なシミュレーションにおいて、非並列な柔軟性と効率を提供する。
論文 参考訳(メタデータ) (2024-02-09T01:19:41Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Online Planning in POMDPs with Self-Improving Simulators [17.722070992253638]
私たちはオンラインで、時間とともに改善する近似的だがはるかに高速なシミュレータを学びます。
近似シミュレータが学習中に確実に効率的に計画を行うため,シミュレーション毎にどのシミュレータを使うかを適応的に決定する手法を開発した。
2つの大きなドメインの実験的結果は、POMCPと統合すると、我々のアプローチは時間とともに効率を向上して計画できることを示している。
論文 参考訳(メタデータ) (2022-01-27T09:41:59Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - Integrating Machine Learning with HPC-driven Simulations for Enhanced
Student Learning [0.0]
シミュレーション出力を生成するためのHPC駆動型シミュレーションとMLサロゲート手法の両方をサポートするWebアプリケーションを開発した。
授業内フィードバックと調査を通じて評価した結果,ML強化ツールは動的かつ応答性のあるシミュレーション環境を提供することがわかった。
論文 参考訳(メタデータ) (2020-08-24T22:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。