Learning Weakly Convex Sets in Metric Spaces
- URL: http://arxiv.org/abs/2105.06251v2
- Date: Tue, 19 Mar 2024 18:02:11 GMT
- Title: Learning Weakly Convex Sets in Metric Spaces
- Authors: Eike Stadtländer, Tamás Horváth, Stefan Wrobel,
- Abstract summary: A central problem in the theory of machine learning is whether it is possible to efficiently find a consistent hypothesis i.e. which has zero error.
We show that the general idea of our algorithm can even be extended to the case of weakly convex hypotheses.
- Score: 2.0618817976970103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the central problems studied in the theory of machine learning is the question of whether, for a given class of hypotheses, it is possible to efficiently find a {consistent} hypothesis, i.e., which has zero training error. While problems involving {\em convex} hypotheses have been extensively studied, the question of whether efficient learning is possible for non-convex hypotheses composed of possibly several disconnected regions is still less understood. Although it has been shown quite a while ago that efficient learning of weakly convex hypotheses, a parameterized relaxation of convex hypotheses, is possible for the special case of Boolean functions, the question of whether this idea can be developed into a generic paradigm has not been studied yet. In this paper, we provide a positive answer and show that the consistent hypothesis finding problem can indeed be solved in polynomial time for a broad class of weakly convex hypotheses over metric spaces. To this end, we propose a general domain-independent algorithm for finding consistent weakly convex hypotheses and prove sufficient conditions for its efficiency that characterize the corresponding hypothesis classes. To illustrate our general algorithm and its properties, we discuss several non-trivial learning examples to demonstrate how it can be used to efficiently solve the corresponding consistent hypothesis finding problem. Without the weak convexity constraint, these problems are known to be computationally intractable. We then proceed to show that the general idea of our algorithm can even be extended to the case of extensional weakly convex hypotheses, as it naturally arise, e.g., when performing vertex classification in graphs. We prove that using our extended algorithm, the problem can be solved in polynomial time provided the distances in the domain can be computed efficiently.
Related papers
- Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
We present a new framework to address the non-robust hypothesis testing problem.
The goal is to seek the optimal detector that minimizes the maximum numerical risk.
arXiv Detail & Related papers (2024-03-21T20:29:43Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - On Continuity of Robust and Accurate Classifiers [3.8673630752805437]
It has been shown that adversarial training can improve the robustness of the hypothesis.
It has been suggested that robustness and accuracy of a hypothesis are at odds with each other.
In this paper, we put forth the alternative proposal that it is the continuity of a hypothesis that is incompatible with its robustness and accuracy.
arXiv Detail & Related papers (2023-09-29T08:14:25Z) - Learnability, Sample Complexity, and Hypothesis Class Complexity for
Regression Models [10.66048003460524]
This work is inspired by the foundation of PAC and is motivated by the existing regression learning issues.
The proposed approach, denoted by epsilon-Confidence Approximately Correct (epsilon CoAC), utilizes Kullback Leibler divergence (relative entropy)
It enables the learner to compare hypothesis classes of different complexity orders and choose among them the optimum with the minimum epsilon.
arXiv Detail & Related papers (2023-03-28T15:59:12Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Learning from Non-Random Data in Hilbert Spaces: An Optimal Recovery
Perspective [12.674428374982547]
We consider the regression problem from an Optimal Recovery perspective.
We first develop a semidefinite program for calculating the worst-case error of any recovery map in finite-dimensional Hilbert spaces.
We show that Optimal Recovery provides a formula which is user-friendly from an algorithmic point-of-view.
arXiv Detail & Related papers (2020-06-05T21:49:07Z) - Counterexamples to the Low-Degree Conjecture [80.3668228845075]
A conjecture of Hopkins posits that for certain high-dimensional hypothesis testing problems, no-time algorithm can outperform so-called "simple statistics"
This conjecture formalizes the beliefs surrounding a line of recent work that seeks to understand statistical-versus-computational tradeoffs.
arXiv Detail & Related papers (2020-04-17T21:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.