Optimal Multi-Distribution Learning
- URL: http://arxiv.org/abs/2312.05134v4
- Date: Thu, 23 May 2024 16:28:21 GMT
- Title: Optimal Multi-Distribution Learning
- Authors: Zihan Zhang, Wenhao Zhan, Yuxin Chen, Simon S. Du, Jason D. Lee,
- Abstract summary: Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
- Score: 88.3008613028333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions, has emerged as a unified framework in response to the evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-efficient MDL necessitates adaptive sampling, also called on-demand sampling, throughout the learning process. However, there exist substantial gaps between the state-of-the-art upper and lower bounds on the optimal sample complexity. Focusing on a hypothesis class of Vapnik-Chervonenkis (VC) dimension d, we propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon^2 (modulo some logarithmic factor), matching the best-known lower bound. Our algorithmic ideas and theory are further extended to accommodate Rademacher classes. The proposed algorithms are oracle-efficient, which access the hypothesis class solely through an empirical risk minimization oracle. Additionally, we establish the necessity of randomization, revealing a large sample size barrier when only deterministic hypotheses are permitted. These findings resolve three open problems presented in COLT 2023 (i.e., citet[Problems 1, 3 and 4]{awasthi2023sample}).
Related papers
- Collaborative Learning with Different Labeling Functions [7.228285747845779]
We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions.
We show that, when the data distributions satisfy a weaker realizability assumption, sample-efficient learning is still feasible.
arXiv Detail & Related papers (2024-02-16T04:32:22Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Optimal PAC Bounds Without Uniform Convergence [11.125968799758436]
We provide optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments.
Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds.
Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal.
arXiv Detail & Related papers (2023-04-18T17:57:31Z) - Supervised Multivariate Learning with Simultaneous Feature Auto-grouping
and Dimension Reduction [7.093830786026851]
This paper proposes a novel clustered reduced-rank learning framework.
It imposes two joint matrix regularizations to automatically group the features in constructing predictive factors.
It is more interpretable than low-rank modeling and relaxes the stringent sparsity assumption in variable selection.
arXiv Detail & Related papers (2021-12-17T20:11:20Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
We consider active learning for binary classification in the agnostic pool-based setting.
Our algorithm is superior to state of the art active learning algorithms on image classification datasets.
arXiv Detail & Related papers (2021-05-13T18:24:30Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.