NLP is Not enough -- Contextualization of User Input in Chatbots
- URL: http://arxiv.org/abs/2105.06511v1
- Date: Thu, 13 May 2021 18:57:32 GMT
- Title: NLP is Not enough -- Contextualization of User Input in Chatbots
- Authors: Nathan Dolbir, Triyasha Dastidar, and Kaushik Roy
- Abstract summary: Advanced Natural Language Processing techniques, based on deep networks, efficiently process user requests to carry out their functions.
As chatbots gain traction, their applicability in healthcare is an attractive proposition due to the reduced economic and people costs of an overburdened system.
However, healthcare bots require safe and medically accurate information capture, which deep networks aren't yet capable of due to user text and speech variations.
- Score: 4.833037692738672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI chatbots have made vast strides in technology improvement in recent years
and are already operational in many industries. Advanced Natural Language
Processing techniques, based on deep networks, efficiently process user
requests to carry out their functions. As chatbots gain traction, their
applicability in healthcare is an attractive proposition due to the reduced
economic and people costs of an overburdened system. However, healthcare bots
require safe and medically accurate information capture, which deep networks
aren't yet capable of due to user text and speech variations. Knowledge in
symbolic structures is more suited for accurate reasoning but cannot handle
natural language processing directly. Thus, in this paper, we study the effects
of combining knowledge and neural representations on chatbot safety, accuracy,
and understanding.
Related papers
- A Complete Survey on LLM-based AI Chatbots [46.18523139094807]
The past few decades have witnessed an upsurge in data, forming the foundation for data-hungry, learning-based AI technology.
Conversational agents, often referred to as AI chatbots, rely heavily on such data to train large language models (LLMs) and generate new content (knowledge) in response to user prompts.
This paper presents a complete survey of the evolution and deployment of LLM-based chatbots in various sectors.
arXiv Detail & Related papers (2024-06-17T09:39:34Z) - A General-purpose AI Avatar in Healthcare [1.5081825869395544]
This paper focuses on the role of chatbots in healthcare and explores the use of avatars to make AI interactions more appealing to patients.
A framework of a general-purpose AI avatar application is demonstrated by using a three-category prompt dictionary and prompt improvement mechanism.
A two-phase approach is suggested to fine-tune a general-purpose AI language model and create different AI avatars to discuss medical issues with users.
arXiv Detail & Related papers (2024-01-10T03:44:15Z) - Assistive Chatbots for healthcare: a succinct review [0.0]
The focus on AI-enabled technology is because of its potential for enhancing the quality of human-machine interaction.
There is a lack of trust on this technology regarding patient safety and data protection.
Patients have expressed dissatisfaction with Natural Language Processing skills.
arXiv Detail & Related papers (2023-08-08T10:35:25Z) - Towards Healthy AI: Large Language Models Need Therapists Too [41.86344997530743]
We define Healthy AI to be safe, trustworthy and ethical.
We present the SafeguardGPT framework that uses psychotherapy to correct for these harmful behaviors.
arXiv Detail & Related papers (2023-04-02T00:39:12Z) - You Don't Know My Favorite Color: Preventing Dialogue Representations
from Revealing Speakers' Private Personas [44.82330540456883]
We show that speakers' personas can be inferred through a simple neural network with high accuracy.
We conduct extensive experiments to demonstrate that our proposed defense objectives can greatly reduce the attack accuracy from 37.6% to 0.5%.
arXiv Detail & Related papers (2022-04-26T09:36:18Z) - A Literature Survey of Recent Advances in Chatbots [0.0]
We review recent advances on chatbots, where Artificial Intelligence and Natural Language processing are used.
We highlight the main challenges and limitations of current work and make recommendations for future research investigation.
arXiv Detail & Related papers (2022-01-17T23:08:58Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second.
We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence.
arXiv Detail & Related papers (2021-12-31T22:26:41Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - An ontology-based chatbot for crises management: use case coronavirus [0.0]
The project is to create a COVID Assistant to provide the need of up to date information to be available 24 hours.
This master thesis is dedicated to discuss COVID Assistant and explain each component in detail.
arXiv Detail & Related papers (2020-11-02T09:30:51Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
We introduce a neural semantic parsing system that learns new high-level abstractions through decomposition.
Users interactively teach the system by breaking down high-level utterances describing novel behavior into low-level steps.
arXiv Detail & Related papers (2020-10-11T08:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.