Stochastic-Shield: A Probabilistic Approach Towards Training-Free
Adversarial Defense in Quantized CNNs
- URL: http://arxiv.org/abs/2105.06512v1
- Date: Thu, 13 May 2021 18:59:15 GMT
- Title: Stochastic-Shield: A Probabilistic Approach Towards Training-Free
Adversarial Defense in Quantized CNNs
- Authors: Lorena Qendro, Sangwon Ha, Ren\'e de Jong, Partha Maji
- Abstract summary: Quantized neural networks (NNs) are the common standard to efficiently deploy deep learning models on tiny hardware platforms.
We show that it is possible to jointly achieve efficiency and robustness by accurately enabling each module without the burden of re-retraining or ad hoc fine-tuning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantized neural networks (NN) are the common standard to efficiently deploy
deep learning models on tiny hardware platforms. However, we notice that
quantized NNs are as vulnerable to adversarial attacks as the full-precision
models. With the proliferation of neural networks on small devices that we
carry or surround us, there is a need for efficient models without sacrificing
trust in the prediction in presence of malign perturbations. Current mitigation
approaches often need adversarial training or are bypassed when the strength of
adversarial examples is increased.
In this work, we investigate how a probabilistic framework would assist in
overcoming the aforementioned limitations for quantized deep learning models.
We explore Stochastic-Shield: a flexible defense mechanism that leverages input
filtering and a probabilistic deep learning approach materialized via Monte
Carlo Dropout. We show that it is possible to jointly achieve efficiency and
robustness by accurately enabling each module without the burden of
re-retraining or ad hoc fine-tuning.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Learning Robust Kernel Ensembles with Kernel Average Pooling [3.6540368812166872]
We introduce Kernel Average Pooling (KAP), a neural network building block that applies the mean filter along the kernel dimension of the layer activation tensor.
We show that ensembles of kernels with similar functionality naturally emerge in convolutional neural networks equipped with KAP and trained with backpropagation.
arXiv Detail & Related papers (2022-09-30T19:49:14Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness [4.794745827538956]
We find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models.
We propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network.
Experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.
arXiv Detail & Related papers (2021-10-23T22:11:30Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
We present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference.
In this work, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-11-02T17:12:22Z) - RAB: Provable Robustness Against Backdoor Attacks [20.702977915926787]
We focus on certifying the machine learning model robustness against general threat models, especially backdoor attacks.
We propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks.
We conduct comprehensive experiments for different machine learning (ML) models and provide the first benchmark for certified robustness against backdoor attacks.
arXiv Detail & Related papers (2020-03-19T17:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.