A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness
- URL: http://arxiv.org/abs/2110.12308v1
- Date: Sat, 23 Oct 2021 22:11:30 GMT
- Title: A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness
- Authors: Chang Song, Riya Ranjan, Hai Li
- Abstract summary: We find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models.
We propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network.
Experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.
- Score: 4.794745827538956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are getting better accuracy with higher energy and
computational cost. After quantization, the cost can be greatly saved, and the
quantized models are more hardware friendly with acceptable accuracy loss. On
the other hand, recent research has found that neural networks are vulnerable
to adversarial attacks, and the robustness of a neural network model can only
be improved with defense methods, such as adversarial training. In this work,
we find that adversarially-trained neural networks are more vulnerable to
quantization loss than plain models. To minimize both the adversarial and the
quantization losses simultaneously and to make the quantized model robust, we
propose a layer-wise adversarial-aware quantization method, using the Lipschitz
constant to choose the best quantization parameter settings for a neural
network. We theoretically derive the losses and prove the consistency of our
metric selection. The experiment results show that our method can effectively
and efficiently improve the robustness of quantized adversarially-trained
neural networks.
Related papers
- Towards Efficient Verification of Quantized Neural Networks [9.352320240912109]
Quantization replaces floating point arithmetic with integer arithmetic in deep neural network models.
We show how efficiency can be improved by utilizing gradient-based search methods and also bound-propagation techniques.
arXiv Detail & Related papers (2023-12-20T00:43:13Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - On the Adversarial Robustness of Quantized Neural Networks [2.0625936401496237]
It is unclear how model compression techniques may affect the robustness of AI algorithms against adversarial attacks.
This paper explores the effect of quantization, one of the most common compression techniques, on the adversarial robustness of neural networks.
arXiv Detail & Related papers (2021-05-01T11:46:35Z) - Improving Adversarial Robustness in Weight-quantized Neural Networks [4.794745827538956]
Quantization is a useful technique in deploying neural networks on hardware platforms.
Recent research reveals that neural network models, no matter full-precision or quantized, are vulnerable to adversarial attacks.
We propose a boundary-based retraining method to mitigate adversarial and quantization losses together.
arXiv Detail & Related papers (2020-12-29T22:50:17Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.