論文の概要: Handwriting Recognition with Novelty
- arxiv url: http://arxiv.org/abs/2105.06582v1
- Date: Thu, 13 May 2021 23:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-17 23:55:34.775518
- Title: Handwriting Recognition with Novelty
- Title(参考訳): 新規な手書き認識
- Authors: Derek S. Prijatelj (1), Samuel Grieggs (1), Futoshi Yumoto (2), Eric
Robertson (2), Walter J. Scheirer (1) ((1) University of Notre Dame, (2) PAR
Government)
- Abstract要約: 手書き文書では、ノベルティは書き手、文字属性、属性の書き方、文書全体の外観を変えることができる。
本稿では,手書き認識の領域をノベルティで定式化し,ベースラインエージェントを記述し,ベンチマークデータを用いた評価プロトコルを導入し,最先端の設定実験を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an agent-centric approach to handle novelty in the
visual recognition domain of handwriting recognition (HWR). An ideal
transcription agent would rival or surpass human perception, being able to
recognize known and new characters in an image, and detect any stylistic
changes that may occur within or across documents. A key confound is the
presence of novelty, which has continued to stymie even the best machine
learning-based algorithms for these tasks. In handwritten documents, novelty
can be a change in writer, character attributes, writing attributes, or overall
document appearance, among other things. Instead of looking at each aspect
independently, we suggest that an integrated agent that can process known
characters and novelties simultaneously is a better strategy. This paper
formalizes the domain of handwriting recognition with novelty, describes a
baseline agent, introduces an evaluation protocol with benchmark data, and
provides experimentation to set the state-of-the-art. Results show feasibility
for the agent-centric approach, but more work is needed to approach
human-levels of reading ability, giving the HWR community a formal basis to
build upon as they solve this challenging problem.
- Abstract(参考訳): 本稿では,手書き文字認識(HWR)の視覚認識領域における新規性を扱うエージェント中心のアプローチを提案する。
理想的な転写剤は、人間の知覚に匹敵し、画像中の既知の文字や新しい文字を認識でき、文書内または文書間で起こるスタイリスティックな変化を検出できる。
鍵となるのは、ノベルティの存在であり、これらのタスクに最適な機械学習ベースのアルゴリズムでさえもスタイリングを続けている。
手書きの文書では、新規性は、ライター、文字属性、書き込み属性、あるいはドキュメント全体の外観の変更である。
それぞれの側面を独立して見るのではなく、既知の文字と新規性を同時に処理できる統合エージェントがより良い戦略であると提案する。
本稿では,手書き認識の領域をノベルティで定式化し,ベースラインエージェントを記述し,ベンチマークデータを用いた評価プロトコルを導入し,最先端の設定実験を提供する。
結果はエージェント中心のアプローチが実現可能であることを示しているが、読解能力の人間レベルへのアプローチにはより多くの作業が必要であり、hwrコミュニティがこの困難な問題を解決するための正式な基礎を与えている。
関連論文リスト
- UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNITは、単一のモデル内で画像とテキストの認識を統一することを目的とした、新しいトレーニングフレームワークである。
文書関連タスクにおいて,UNITが既存の手法を著しく上回ることを示す。
注目すべきなのは、UNITはオリジナルのビジョンエンコーダアーキテクチャを保持しており、推論とデプロイメントの点で費用がかからないことだ。
論文 参考訳(メタデータ) (2024-09-06T08:02:43Z) - Learning Robust Named Entity Recognizers From Noisy Data With Retrieval Augmentation [67.89838237013078]
名前付きエンティティ認識(NER)モデルは、しばしばノイズの多い入力に悩まされる。
ノイズの多いテキストとそのNERラベルのみを利用できる、より現実的な設定を提案する。
我々は、推論中にテキストを取得することなく、堅牢なNERを改善するマルチビュートレーニングフレームワークを採用している。
論文 参考訳(メタデータ) (2024-07-26T07:30:41Z) - Representing Online Handwriting for Recognition in Large Vision-Language
Models [8.344510330567495]
本稿では,テキストとして,画像として,時間順のストローク列を含む新しいデジタルインク(オンライン手書き)のトークン化表現を提案する。
この表現は、最先端のオンライン筆跡認識器に匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2024-02-23T13:11:10Z) - UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for
Evaluating Unconstrained Handwriting Image Recognition in Vietnamese [2.8360662552057323]
ベトナム語では、現代のラテン文字以外にアクセントと文字マークがあり、最新式の手書き認識法に混乱をもたらす。
低リソース言語として、ベトナムで手書き認識を研究するためのデータセットは少ない。
最近の研究は,ペンストローク座標を接続して構築したオンライン手書きデータセットの画像を用いてベトナムにおけるオフライン手書き認識手法の評価を行っている。
本稿では,オフライン手書き画像に必要な重要な自然属性を関連付ける手書き画像データセットを構築するための転送手法を提案する。
論文 参考訳(メタデータ) (2022-11-10T08:23:54Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Boosting Modern and Historical Handwritten Text Recognition with
Deformable Convolutions [52.250269529057014]
自由進化ページにおける手書き文字認識(HTR)は難しい画像理解課題である。
本稿では,手入力に応じて変形し,テキストの幾何学的変化に適応できる変形可能な畳み込みを導入することを提案する。
論文 参考訳(メタデータ) (2022-08-17T06:55:54Z) - Towards Open-Set Text Recognition via Label-to-Prototype Learning [18.06730376866086]
モデルを再学習することなく,新しい文字を扱えるラベルとプロトタイプの学習フレームワークを提案する。
多くの実験により,提案手法は様々なゼロショット,クローズセット,オープンセットのテキスト認識データセット上で有望な性能を達成できることが示されている。
論文 参考訳(メタデータ) (2022-03-10T06:22:51Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
手書き文字認識は、自動文書画像解析の分野に大きな関心を持つオープンな問題である。
我々は,畳み込みニューラルネットワーク(CNN)とシーケンス・ツー・シーケンス(seq2seq)という,2種類のディープラーニングアーキテクチャの統合に基づく新しい認識モデルを提案する。
提案した新たなモデルでは,他の確立された方法論と競合する結果が得られる。
論文 参考訳(メタデータ) (2021-12-26T07:31:03Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
本稿では,現在の最先端手法の性能を向上させる新手法であるSmartPatchを提案する。
我々は、よく知られたパッチ損失と、平行訓練された手書きテキスト認識システムから収集された情報を組み合わせる。
これにより、より強化された局所識別器が実現し、より現実的で高品質な手書き文字が生成される。
論文 参考訳(メタデータ) (2021-05-21T18:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。