Quantum constraint learning for quantum approximate optimization
algorithm
- URL: http://arxiv.org/abs/2105.06770v2
- Date: Tue, 14 Dec 2021 16:44:03 GMT
- Title: Quantum constraint learning for quantum approximate optimization
algorithm
- Authors: Santosh Kumar Radha
- Abstract summary: This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is a hybrid
quantum-classical variational algorithm that offers the potential to handle
combinatorial optimization problems. Introducing constraints in such
combinatorial optimization problems poses a significant challenge in the
extensions of QAOA to support relevant larger-scale problems. This paper
introduces a quantum machine learning approach to learn the mixer Hamiltonian
required to hard constrain the search subspace. We show that this method can be
used for encoding any general form of constraints. One can directly plug the
learnt unitary into the QAOA framework using an adaptable ansatz. This
procedure gives the flexibility to control the depth of the circuit at the cost
of the accuracy of enforcing the constraint, thus having immediate application
in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an
intuitive metric that uses Wasserstein distance to assess the performance of
general approximate optimization algorithms with/without constraints. Finally,
using this metric, we evaluate the performance of the proposed algorithm.
Related papers
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine.
Our results explore a promising path of applying quantum computers in the compressive sensing field.
arXiv Detail & Related papers (2024-03-26T05:26:51Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
We propose fermionic quantum approximate optimization algorithm (FQAOA) for solving optimization problems with constraints.
FQAOA tackle the constrains issue by using fermion particle number preservation to intrinsically impose them throughout QAOA.
We provide a systematic guideline for designing the driver Hamiltonian for a given problem Hamiltonian with constraints.
arXiv Detail & Related papers (2023-01-25T18:36:58Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
We study the entanglement generated during the execution of ADAPT-QAOA.
By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages.
arXiv Detail & Related papers (2022-05-24T18:00:02Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.