Measurement-Based Quantum Approximate Optimization
- URL: http://arxiv.org/abs/2403.11514v1
- Date: Mon, 18 Mar 2024 06:59:23 GMT
- Title: Measurement-Based Quantum Approximate Optimization
- Authors: Tobias Stollenwerk, Stuart Hadfield,
- Abstract summary: We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
- Score: 0.24861619769660645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized quantum circuits are attractive candidates for potential quantum advantage in the near term and beyond. At the same time, as quantum computing hardware not only continues to improve but also begins to incorporate new features such as mid-circuit measurement and adaptive control, opportunities arise for innovative algorithmic paradigms. In this work we focus on measurement-based quantum computing protocols for approximate optimization, in particular related to quantum alternating operator ans\"atze (QAOA), a popular quantum circuit model approach to combinatorial optimization. For the construction and analysis of our measurement-based protocols we demonstrate that diagrammatic approaches, specifically ZX-calculus and its extensions, are effective for adapting such algorithms to the measurement-based setting. In particular we derive measurement patterns for applying QAOA to the broad and important class of QUBO problems. We further outline how for constrained optimization, hard problem constraints may be directly incorporated into our protocol to guarantee the feasibility of the solution found and avoid the need for dealing with penalties. Finally we discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine.
Our results explore a promising path of applying quantum computers in the compressive sensing field.
arXiv Detail & Related papers (2024-03-26T05:26:51Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Lyapunov control-inspired strategies for quantum combinatorial
optimization [0.0]
We provide an expanded description of Lyapunov control-inspired strategies for quantum optimization.
Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner.
arXiv Detail & Related papers (2021-08-12T19:47:59Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.