論文の概要: Mask-Guided Discovery of Semantic Manifolds in Generative Models
- arxiv url: http://arxiv.org/abs/2105.07273v1
- Date: Sat, 15 May 2021 18:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-19 08:09:51.355776
- Title: Mask-Guided Discovery of Semantic Manifolds in Generative Models
- Title(参考訳): 生成モデルにおける意味多様体のマスクガイドによる発見
- Authors: Mengyu Yang, David Rokeby, Xavier Snelgrove
- Abstract要約: StyleGAN2は、低次元の潜在空間内のランダムベクトルから人間の顔の画像を生成する。
モデルはブラックボックスとして動作し、出力の制御も、データから学んだ構造についての洞察も提供しない。
顔の空間的局所化領域の変化の多様体を探索する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in the realm of Generative Adversarial Networks (GANs) have led to
architectures capable of producing amazingly realistic images such as
StyleGAN2, which, when trained on the FFHQ dataset, generates images of human
faces from random vectors in a lower-dimensional latent space. Unfortunately,
this space is entangled - translating a latent vector along its axes does not
correspond to a meaningful transformation in the output space (e.g., smiling
mouth, squinting eyes). The model behaves as a black box, providing neither
control over its output nor insight into the structures it has learned from the
data. We present a method to explore the manifolds of changes of spatially
localized regions of the face. Our method discovers smoothly varying sequences
of latent vectors along these manifolds suitable for creating animations.
Unlike existing disentanglement methods that either require labelled data or
explicitly alter internal model parameters, our method is an optimization-based
approach guided by a custom loss function and manually defined region of
change. Our code is open-sourced, which can be found, along with supplementary
results, on our project page: https://github.com/bmolab/masked-gan-manifold
- Abstract(参考訳): GAN(Generative Adversarial Networks)の領域の進歩は、より低次元の潜在空間におけるランダムなベクトルから人間の顔の画像を生成する、スタイルGAN2のような驚くほどリアルなイメージを生成できるアーキテクチャへと繋がった。
残念ながら、この空間は絡み合っており、その軸に沿って潜伏ベクトルを変換することは、出力空間(例えば、笑顔の口、目を細くするなど)における有意義な変換とは一致しない。
モデルはブラックボックスとして動作し、出力の制御も、データから学んだ構造についての洞察も提供しない。
顔の空間的局所化領域の変化の多様体を探索する手法を提案する。
本手法は,これらの多様体に沿った潜伏ベクトル列のスムーズな変化をアニメーション作成に好適に発見する。
ラベル付きデータや内部モデルパラメータを明示的に変更する既存のアンタングルメント手法とは異なり、この手法はカスタム損失関数と手動で定義された変更領域によって導かれる最適化ベースのアプローチである。
私たちのコードはオープンソースで、補完的な結果とともに、プロジェクトページにある。 https://github.com/bmolab/masked-gan-manifold.com/
関連論文リスト
- DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control [68.14798033899955]
大規模で事前訓練された潜伏拡散モデル(LDM)は、創造的コンテンツを生成できる異常な能力を示した。
しかし、それらは例えば、セマンティックセグメンテーションのような知覚スタックのタスクを改善するために、大規模なデータジェネレータとして使用できますか?
自律運転の文脈でこの疑問を考察し、「はい」という言い換えで答える。
論文 参考訳(メタデータ) (2023-12-05T18:34:12Z) - Pre-training with Random Orthogonal Projection Image Modeling [32.667183132025094]
Masked Image Modeling (MIM)は、ラベルを使わずに視覚前訓練のための強力な自己教師型戦略である。
ランダム直交投影画像モデリング(ROPIM)に基づく画像モデリングフレームワークを提案する。
ROPIMはノイズ分散が保証される場合の空間的トークン情報を低減し、局所的に変化するマスキング度の下で空間的画像領域全体をマスキングすると見なすことができる。
論文 参考訳(メタデータ) (2023-10-28T15:42:07Z) - Discovering Interpretable Directions in the Semantic Latent Space of Diffusion Models [21.173910627285338]
DDM(Denoising Diffusion Models)は、GAN(Generative Adversarial Networks)の強力な競合相手として登場した。
本稿では,h-spaceの特性について検討し,その中に意味のある意味的方向を求めるための新しい手法を提案する。
私たちのアプローチは、アーキテクチャの変更、テキストベースのガイダンス、CLIPベースの最適化、モデル微調整を必要とせずに適用できます。
論文 参考訳(メタデータ) (2023-03-20T12:59:32Z) - Spatial Steerability of GANs via Self-Supervision from Discriminator [123.27117057804732]
本稿では,GANの空間的ステアビリティを向上させるための自己教師型アプローチを提案する。
具体的には、空間帰納バイアスとして生成モデルの中間層に符号化されるランダムなガウス熱マップを設計する。
推論中、ユーザは直感的に空間のヒートマップと対話し、シーンのレイアウトを調整したり、移動したり、オブジェクトを削除したりすることで、出力画像を編集することができる。
論文 参考訳(メタデータ) (2023-01-20T07:36:29Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Orthogonal Jacobian Regularization for Unsupervised Disentanglement in
Image Generation [64.92152574895111]
直交ジャコビアン正規化法(OroJaR)を提案する。
提案手法は, 絡み合った, 制御可能な画像生成に有効であり, 最先端の手法に対して好適に機能する。
論文 参考訳(メタデータ) (2021-08-17T15:01:46Z) - StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for
Real-time Image Editing [19.495153059077367]
generative adversarial networks (gans) はランダムな潜在ベクトルから現実的な画像を合成する。
ganによる実画像の編集は、実画像を潜在ベクトルに投影するための時間消費最適化(ii)またはエンコーダによる不正確な埋め込みに苦しむ。
StyleMapGANを提案する:中間潜空間は空間次元を持ち、空間的変異体はAdaINを置き換える。
論文 参考訳(メタデータ) (2021-04-30T04:43:24Z) - Do Generative Models Know Disentanglement? Contrastive Learning is All
You Need [59.033559925639075]
本論文では,変数空間におけるコントラスト(DisCo)による非監視的,モデル非依存的手法を提案する。
DisCoは、GAN、VAE、およびフローを含む、事前訓練された非解離生成モデルに与えられた最先端の解離を達成します。
論文 参考訳(メタデータ) (2021-02-21T08:01:20Z) - The Geometry of Deep Generative Image Models and its Applications [0.0]
generative adversarial networks (gans) は、実世界のデータセットの統計パターンをモデル化する強力な教師なし手法として登場した。
これらのネットワークは、潜在空間内のランダムな入力を学習データを表す新しいサンプルにマップするように訓練される。
潜在空間の構造は、その高い寸法性と発電機の非線形性のために内挿しが困難である。
論文 参考訳(メタデータ) (2021-01-15T07:57:33Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
解釈可能な生成プロセスは、様々な画像編集アプリケーションに有用である。
本稿では,任意の学習された生成逆数ネットワークが与えられた潜在空間における解釈可能な方向を検出する枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-24T02:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。