論文の概要: Understanding the Effect of Bias in Deep Anomaly Detection
- arxiv url: http://arxiv.org/abs/2105.07346v1
- Date: Sun, 16 May 2021 03:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 15:05:40.946792
- Title: Understanding the Effect of Bias in Deep Anomaly Detection
- Title(参考訳): 深部異常検出におけるバイアスの影響の理解
- Authors: Ziyu Ye, Yuxin Chen and Haitao Zheng
- Abstract要約: 異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
- 参考スコア(独自算出の注目度): 15.83398707988473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection presents a unique challenge in machine learning, due to the
scarcity of labeled anomaly data. Recent work attempts to mitigate such
problems by augmenting training of deep anomaly detection models with
additional labeled anomaly samples. However, the labeled data often does not
align with the target distribution and introduces harmful bias to the trained
model. In this paper, we aim to understand the effect of a biased anomaly set
on anomaly detection. Concretely, we view anomaly detection as a supervised
learning task where the objective is to optimize the recall at a given false
positive rate. We formally study the relative scoring bias of an anomaly
detector, defined as the difference in performance with respect to a baseline
anomaly detector. We establish the first finite sample rates for estimating the
relative scoring bias for deep anomaly detection, and empirically validate our
theoretical results on both synthetic and real-world datasets. We also provide
an extensive empirical study on how a biased training anomaly set affects the
anomaly score function and therefore the detection performance on different
anomaly classes. Our study demonstrates scenarios in which the biased anomaly
set can be useful or problematic, and provides a solid benchmark for future
research.
- Abstract(参考訳): 異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
しかし、ラベル付きデータはしばしば対象の分布と一致せず、訓練されたモデルに有害なバイアスをもたらす。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
具体的には,異常検出を,与えられた偽陽性率でリコールを最適化することを目的とした教師付き学習課題とみなす。
本稿では, 異常検出器の性能差として定義される異常検出器の相対的評価バイアスについて, 正式に検討する。
深部異常検出のための相対的採点バイアスを推定するための最初の有限標本率を確立し, 合成および実世界の両方のデータセットに関する理論的結果を実証的に検証した。
また、偏りのあるトレーニング異常セットが異常スコア関数にどのように影響するか、また、異なる異常クラスにおける検出性能について広範な実証的研究を行った。
本研究は,バイアス付き異常集合が有用あるいは問題となるシナリオを示し,今後の研究に確かなベンチマークを提供する。
関連論文リスト
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
そこで本稿では,SaliencyCutという新たなデータ拡張手法を提案する。
次に、各サンプルから微細な異常特徴を抽出し評価するために、異常学習ヘッドにパッチワイド残余モジュールを新規に設計する。
論文 参考訳(メタデータ) (2023-06-14T08:55:36Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Towards Fair Deep Anomaly Detection [24.237000220172906]
我々は,fair anomaly detectionアプローチ(deep fair svdd)のための新しいアーキテクチャを提案する。
提案手法は,異常検出性能の低下を最小限に抑えることで不公平を解消できることを示す。
論文 参考訳(メタデータ) (2020-12-29T22:34:45Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。