論文の概要: Protein sequence-to-structure learning: Is this the end(-to-end
revolution)?
- arxiv url: http://arxiv.org/abs/2105.07407v1
- Date: Sun, 16 May 2021 10:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:25:29.853718
- Title: Protein sequence-to-structure learning: Is this the end(-to-end
revolution)?
- Title(参考訳): タンパク質配列から構造への学習:これが終わり(エンドツーエンド革命)か?
- Authors: Elodie Laine, Stephan Eismann, Arne Elofsson, and Sergei Grudinin
- Abstract要約: CASP14では、ディープラーニングにより、予想外のレベルがほぼ実験精度に達するまで、フィールドが強化された。
新しいアプローチには、(i)幾何学的学習、すなわち、
グラフ、3d voronoi tessellation、point cloudsといった表現について学ぶ。
我々は,過去2年間に開発され,CASP14で広く利用されている新しいディープラーニングアプローチの概要と展望について述べる。
- 参考スコア(独自算出の注目度): 0.8399688944263843
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The potential of deep learning has been recognized in the protein structure
prediction community for some time, and became indisputable after CASP13. In
CASP14, deep learning has boosted the field to unanticipated levels reaching
near-experimental accuracy. This success comes from advances transferred from
other machine learning areas, as well as methods specifically designed to deal
with protein sequences and structures, and their abstractions. Novel emerging
approaches include (i) geometric learning, i.e. learning on representations
such as graphs, 3D Voronoi tessellations, and point clouds; (ii) pre-trained
protein language models leveraging attention; (iii) equivariant architectures
preserving the symmetry of 3D space; (iv) use of large meta-genome databases;
(v) combinations of protein representations; (vi) and finally truly end-to-end
architectures, i.e. differentiable models starting from a sequence and
returning a 3D structure. Here, we provide an overview and our opinion of the
novel deep learning approaches developed in the last two years and widely used
in CASP14.
- Abstract(参考訳): 深層学習の可能性はかなり前からタンパク質構造予測コミュニティで認識されており、CASP13以降は議論の余地がなくなった。
CASP14では、ディープラーニングにより、予想外のレベルがほぼ実験精度に達するまで、フィールドが強化された。
この成功は、他の機械学習分野から移行した進歩と、タンパク質配列や構造、それらの抽象化を扱うために特別に設計された方法から来ている。
新しいアプローチには、(i)幾何学的学習、すなわち、
グラフ、3dボロノイテッセレーション、ポイントクラウドといった表現について学ぶ; (ii)注意力を利用した事前学習されたタンパク質言語モデル; (iii) 3d空間の対称性を保つ等変的アーキテクチャ; (iv)大規模なメタゲノムデータベースの使用; (v)タンパク質表現の組み合わせ; (vi) 究極のエンドツーエンドアーキテクチャ。
シーケンスから始まり、3D構造を返す微分可能なモデル。
本稿では,過去2年間に開発され,casp14で広く使用されている新しいディープラーニングアプローチの概要と意見を紹介する。
関連論文リスト
- Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs [26.727436310732692]
本稿では,3次元タンパク質構造上の3次元グラフニューラルネットワークを事前学習するための自己教師型手法を提案する。
提案手法が6%までの大幅な改善につながることを実験的に示す。
論文 参考訳(メタデータ) (2024-06-20T09:34:31Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
本稿では,タンパク質の理解と生成を同時に行うために,統一されたタンパク質言語モデル xTrimoPGLM を提案する。
xTrimoPGLMは、4つのカテゴリにわたる18のタンパク質理解ベンチマークにおいて、他の高度なベースラインを著しく上回っている。
また、自然の原理に従ってデノボタンパク質配列を生成でき、微調整を監督した後にプログラム可能な生成を行うことができる。
論文 参考訳(メタデータ) (2024-01-11T15:03:17Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
効果的なタンパク質表現の学習は、タンパク質機能の予測のような生物学の様々なタスクにおいて重要である。
近年, タンパク質言語モデル(PLM)に基づく配列表現学習法は, 配列ベースタスクでは優れているが, タンパク質構造に関わるタスクへの直接適応は依然として困難である。
本研究は、最先端のPLMと異なる構造エンコーダを統合することで、結合タンパク質表現学習の包括的研究を行う。
論文 参考訳(メタデータ) (2023-03-11T01:24:10Z) - Boosting Convolutional Neural Networks' Protein Binding Site Prediction
Capacity Using SE(3)-invariant transformers, Transfer Learning and
Homology-based Augmentation [1.160208922584163]
標的タンパク質の小さな結合部位を、ポケットや残基の分解能で見つけることは、実際の薬物発見のシナリオにおいて重要である。
そこで本研究では,実世界のアプリケーションに関係のある,結合サイト予測のための新しい計算手法を提案する。
論文 参考訳(メタデータ) (2023-02-20T05:02:40Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
我々は、タンパク質言語モデルから学んだ知識を、いくつかの最先端の幾何学的ネットワークに統合する。
以上の結果から,ベースラインを20%上回る総合的な改善が見られた。
強い証拠は、タンパク質言語モデルの知識を取り入れることで、幾何学的ネットワークの能力が著しく向上することを示している。
論文 参考訳(メタデータ) (2022-12-07T04:04:04Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation [41.66010308405784]
本稿では,3次元タンパク質構造の比較,変形,生成のための統合幾何学的ニューラルネットワーク手法を提案する。
本手法は, トレーニングデータの構造と異なり, 可塑性構造を生成することができる。
論文 参考訳(メタデータ) (2021-06-22T16:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。